43530

Расчет балки и ее характеристик

Курсовая

Производство и промышленные технологии

Для указанных схем определить собственные частоты и формы колебаний. Проверить ортогональность собственных форм колебаний. Определить амплитуды вынужденных колебаний под действием силы P(t) = P0cosΩt, приложенной в точке А. Построить эпюру динамических изгибающих моментов при частоте Ω = (γ/mδ)1/2

Русский

2013-11-06

3.86 MB

8 чел.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПЕЧАТИ

 

Кафедра теоретической и прикладной механики

Курсовая работа

по курсу «Сопротивление материалов»

Вариант 12

Группа: ДМ-3

                                                                                     Студент: Солодовник А.Н.

                                                                                 _______________________

                                                                                    Преподаватель: Роев Б.А.

     _______________________

МОСКВА, 2008 г.

Задача№6

Задание:

  1.  Раскрыть статическую неопределимость для заданной балки.
  2.  Выбрать новую основную систему и произвести деформационную проверку.
  3.  Построить эпюры поперечных сил Qy и изгибающих моментов Mx.
  4.  По заданному поперечному сечению из условия прочности установить предельно допустимое значение параметра внешней нагрузки [q].
  5.  Пользуясь методом начальных параметров, вычислить прогибы в нескольких сечениях балки и построить их эпюру.

Данные:

P=3ql, m=ql2, q=45 кН/кг, марка стали 35.

Схема: 

Решение:

  1.  Определим степень статической неопределимости системы:

n = 5 – 3 = 2.

  1.  Выбираем основную систему (ОС) и запишем канонические уравнения метода сил для этой расчётной ОС:

  •  Строим эпюру Мр. Для этого находим реации опор ОС и определяем значения  момента Мр в отдельных точках. 

ΣFy = 0:   N1 + N2 - P - q*5/2l = 0;

                 N1 + N2 – 3*ql – 5/2*ql = 0;

                 N1 + N2 = 11/2*ql.

ΣmomA(Fy) = 0:   mP*2l + N2*9/2lq*5/2l*13/4l = 0;

                              ql2 – 6*ql2 + N2*9/2l -65/8*ql2 = 0;

                              N2 = 105/36*ql; N1 = 31/12*ql.

Проверка: ΣmomC(Fy) = 0:   mN1*2lq*5/2l*5/4l + N2*5/2l = 0.

Построение эпюры по точкам:

(5/2l): Mp = 31/12ql*5/2lql2 – 3/2*ql2q*1/2l*1/4l = 23/6*ql2;

(3l): Mp = 31/12ql*3l – ql2 – 3ql*l – q*l*1/2l = 13/4*ql2;

(7/2l): Mp = 31/12ql*7/2l – ql2 – 3ql*3/2l – q*3/2l*3/4l = 29/12*ql2;

(4l): Mp = 31/12ql*4l – ql2 – 3ql*2l – q*2l*l = 4/3*ql2.

  •  Далее построим эпюры единичных сил Х1 и Х2, приложенных в точках отброшенных при выборе основной системы подвижных шарниров:

  •  Для наглядности приводим три построенные эпюры вместе:

  •  Находим коэффициенты канонических уравнений метода сил при помощи правила Верещагина:

= *

=  

=  =

= [+

 ] =-4145/576

= [

]= -9169/1728

  •  Подставляем полученные коэффициенты в канонические уравнения метода сил

и получаем неизвестные реакции:

  •  Для построения эпюры Mx представим сначала вспомогательные эпюры M1X1 и M2X2 , а потом по формуле Mx = M1X1 + M2X2 + Mp

рассчитаем Mx для ключевых точек балки и построим эрюру.

  1.  Выбираем новую проверочную систему (ОСп). Строим единичные эпюры М3 и М4 и проводим деформационную проверку:

 

=  

=  -

= 0.

  1.  Находим из условия прочности допускаемое значение распределённой нагрузки [q]. Условие прочности имеет следующий вид:

.

Mmax = 3467/1992*ql2 = 3467/1992*45*0.49 = 38.377 кН*м;

[σ] = σт/n = 32/1.5 = 21.333 Н/cм2;

Wx = Mx max/[σ] = 38.377*102/21.333 = 179.9 см3;

Выбираем двутавр №20, у которого Ix = 1840 см4 и Wx = 184 см3. Тогда,

[q] = = кН/м

  1.  Используя формулы метода начальных параметров для основной системы, с помощью которой была раскрыта статическая неопределимость, строим упругую линию:

EIx*y = EIx*y0 + EIx*θ0*z + 3467ql*z3/3984*6 |Iql2*(z-2l)2/2– 3*ql*(z-2l)3/6– q*(z-2l)4/24 |II + 30281*ql*(z-3l)3/6*3984 |III – 4903*ql*(z-7/2*l)3/6*1328 |IV .

Так как в шарнире перемещение равно нулю, то y0 = 0. θ0 находим из второго начального условия: y(3l) = 0.

θ0 = -22903*ql3/23904*EIx .

Окончательная формула для упругой линии запишется так:

EIx*y = -22903*ql3*z/23904 + 3467ql*z3/3984*6 |Iql2*(z-2l)2/2– ql*(z-2l)3/2 – q*(z-2l)4/24 |II + 30281*ql*(z-3l)3/6*3984 |III – 4903*ql*(z-7/2*l)3/6*1328 |IV .

Для построения графика упругой линии составляем таблицу:

 

I

II

III

IV

z,l

0

1

2

3

4

5

6

7

8

EIxy

0

-0,813

-0,756

-0,319

0

0,025

0

-0,027

0

Задача №7

Задание:

  1.  Раскрыть статическую неопределимость для заданной рамы и построить эпюры продольных сил Nz, поперечных сил Qy и изгибающих моментов Mx.
  2.  Выбрать новую основную систему и произвести деформационную проверку.
  3.  Найти полное линейное перемещение сечения А.

Данные:

P=3ql, m=ql2, q=45 кН/кг, марка стали 35.

Схема:

Решение:

1. Определим степень статической неопределимости системы

N = 4 – 3 = 1.

Таким образом, имеем  один раз статически неопределимую систему.

2. В качестве основной расчётной системы выбираем такую раму:

3. Построение эпюр Мр и М1. Прикладываем в направлении Х1 единичную силу.

При этом определяем единичные реакции в опорах рамы из уравнений статики:

ΣFky = 0: Bv’ + Av’ = 1;

ΣmomB(Fk) = 0: 1*2lAv’*5/2*l = 0;

                          Av’*5/2*l = 2*l → Av’ = 4/5;

                                                        Bv’ = 1/5.

Проверка:  ΣmomА(Fk) = 0:  -1*1/2*l + 1/5*5/2*l = 0.

Теперь строим единичную эпюру:

Переходим к постронию грузовой эпюры Мр для рамы при нагрузке q, P, m и отброшенной неизвестной силе Х1.

Реакции в опорах при этом определяем из уравнений статики:

ΣFky = 0: Av + Bv – P – 5/2*ql = 0;

              Av + Bv = 11/2*ql;

ΣFkx = 0: BH = 0.

ΣmomB(Fk) = 0: -m + Av*5/2*l – P*5/2*l – q*5/2*l*5/4*l = 0;

                          Av*5/2*l = m + P*5/2*l + q*25/8*l2 = 93/8*ql2;

                          Av = 2/5*93/8 = 93/20*ql;

                          Bv = 11/2*ql – 93/20*ql = 17/20*ql.

Проверка:  ΣmomС(Fk) = 0:

-Bv*l + Av*3/2*l – P*3/2*l – m – q*5/2*l*1/4*l =

ql2*(-17/20 + 279/40 – 9/2 – 1 – 5/8) = 0. 

Выполняем далее проверку равновесия узла С:

ΣМС = 27/20*ql2ql2 – 7/20*ql2 ≡ 0.

4. Вычисляем коэффициенты канонического уравнения:

δ11Х1 + Δ = 0.

путём «перемножения» эпюры М1 самой на себя и М1 с Мр по правилу Верещагина. Они равны следующим значениям:

δ11 =  = l3/EIx* *l3/EIx;

Δ1p =  =

ql4/EIx* *ql4/EIx;

Далее из канонического уравнения

31/15*l3/EIx – 145/96*ql4/EIx = 0

находим неизвестную силу Х1

Х1 = ql* *ql.

Применяя полученный результат строим промежуточную эпюру М1Х1:

5. Эпюру Мх строим, используя формулу:

Мх = МP + М1Х1. 

Снова проверим равновесие узла С:

ΣМС = ql2*(1173/2480 – 267/992 – 1011/4960) ≡ 0.

Покажем все известные нагрузки q, m, P и найденную силу Х1 на схеме рамы и определим реакции в опорах.

ΣFky = 0: Av’’ + Bv’’ + X1 – q*5/2*l – P = 0;

              Av’’ + Bv’’ = 4731/992*ql;

ΣmomА(Fk) = 0: -m + X1*2l – P*5/2*l – q*5/2*l*5/4*l + Bv’’*5/2*l = 0;
B
v’’*2l = ql2*(1 – (725/992)*2 +3*5/2 +25/8) = 5041/496*ql2;

Bv’’ = 5041/1240*ql;

Av’’ = 4731/992*ql – 5041/1240*ql = 3491/4960*ql.

Проверка: ΣmomС(Fk) = 0:

-Av’’*l – q*5/2*l*1/4*l – P*3/2*l + X1*l – m + Bv’’*l =

 [-3491/4960 – 5/8 – 9/2 + 725/992*1 – 1 +5041/1240*3/2]*ql2 = 0.

После того, как реакции во всех опорах найдены, строим эпюры Nz и Qy:

6. Для проверки выбираем новую проверочную основную систему:

Приложим вместо силы Х2 единичную силу и найдём реакции в опорах:

ΣFky = 0: Bv’’’ + Av’’’ = 1;

ΣmomA(Fk) = 0: 1*5/2*lBv*2l = 0;

                          Bv = 5/4;

                          Av = -1/4;

Проверка:  ΣmomС(Fk) = 0: - ¼*l + 1*3/2*l – 5/4*l = 0.

Теперь строим эпюру М2 от приложенной единичной силы:

Далее выполняем деформационную проверку этой проверочной основной системы:

Δ2p =  =  ql4/EIx 

7. Перейдём к определению перемещения сечения А. При определении полного перемещения т.А  перекладываем единичные вертикальную и горизонтальную силы в т.А  к основной системе.

Тогда для вертикального перемещения сечения строим эпюру МАВерт, предварительно определив реакции опор:

ΣFky = 0: Rb + Rc = 1;

ΣmomB(Fk) = 0: 1*3/2*lRc*5/2*l = 0;

Rc = 3/2*2/5 = 3/5;

Rb = 2/5.

Проверка: ΣmomD(Fk) = 0: Rb*l + 1*1/2*l – 3/5*3/2*l = 2/5*l + ½*l – 9/10*l = 0.

      ΔAV =  = ql4/EIx*

*ql4/EIx = -0.318*ql4/EIx.

Для определения горизонтального перемещения т.А строим эпюру МАГор.. При приложении единичной горизонтальной силы в левой опоре возникает горизонтальная противоположно направленная реакция, равная 1. Вертикальных реакций нет. Следовательно, эпюру моментов поперечных сил составить нельзя, и горизонтальное перемещение точки А равно нулю.

Тогда полное перемещение сечения А определяется по формуле

ΔА = = ql4/EIx.

Задача №9

Задание:

Определить из статического расчёта на прочность по заданному критерию диаметр d сечения вала. Коэффициент запаса прочности принять равным 1,5.

Исходные данные: 

P2 = 8 кН; P3 = 5 кН; a = 0,4 м; D1 = 0,4 м; D2 = 0,2 м; D3 = 0,4 м; критерий Сен-Венана.

              Решение:

  1.  Определим неизвестную силу Р из условия равновесия:

:      ;

= (кН);

  1.  Вычислим моменты, создаваемые приложенными силами:

 (кН·м);

 (кН·м);

 (кН·м).

  1.  Найдём реакции опор Ay, By, Ax, Bx отдельно для сил, параллельных осям x и y, при помощи уравнений равновесия.

:     ;

 кН.

:      ;

 кН.

:      ;

 кН.

 :  ;

 кН.

Результаты построения эпюр см. в Приложении 1

  1.  Опасным является сечение III. По критерию Сен-Венана приведенный момент вычисляется так:

 (кН·м);

Для стали марки 55 σт = 39 кН·см2. Тогда:

[σ] = σт/n = 26 (кН·см2).

Диаметр вала равен:

(см).

Принимаем d = 6.5 см.

Задача №11

Задание:

  1.  Для указанных схем определить собственные частоты и формы колебаний. Проверить ортогональность собственных форм колебаний.
  2.  Определить амплитуды вынужденных колебаний под действием силы P(t) = P0cosΩt, приложенной в точке А. Построить эпюру динамических изгибающих моментов при частоте Ω = (γ/mδ)1/2.

Данные: K = 2; β = 5; γ = 1; δ = |δ12|.

Рассматриваемая упругая система имеет две степени свободы.

Приложим в местах расположения сосредоточенных масс единичные силы и определим единичные перемещения по правилу Верещагина.

=

l3/EIx;

=  l3/EIx;

=  l3/EIx.

Теперь найдём собственные частоты колебаний, подставив все данные в уравнение:

;

Определяем далее собственные формы колебаний, подставляя ωi, δjk, определённые в предыдущих расчётах.

; при Y21 = 1, Y11 = 0.064.

; при Y22 = 1, Y12 = -3.121.

Убедимся, что полученные собственные формы обладают свойством ортогональности:

~ 0.

Определим амплитуды перемещений вынужденных колебаний:

.

P01 = P0, P02 = 0.

.

;

.

Определяем, наконец, амплитуды действующих сил:

;

.

Для построения эпюры динамических моментов определим реакции опор в долях амплитудного значения приложенной силы из уравнений статики:

:;  By = 1.95P0.

:; Ay = 7.207P0.

Проверка:

 :  .


 

А также другие работы, которые могут Вас заинтересовать

67853. Международные правовые отношения в сфере уголовного судопроизводства 151 KB
  Организация работы следственных подразделений по выполнению международно-правовых поручений и сотрудничество с правоохранительными органами иностранных государств Взаимодействие государств в сфере уголовной юстиции Действующее уголовно-процессуальное законодательство Украины...
67854. Уголовный процесс и вопросы международного сотрудничества 121.5 KB
  Взаимодействие государств в сфере уголовной юстиции осуществляется по следующим основным направлениям: взаимодействие по вопросам разработки международных минимальных стандартных правил функционирования правосудия и обращения с лицами которые принимают в нем участие...
67855. Комп’ютерні мережі як інформаційні системи 43.29 KB
  Сучасній людині важко уявити собі життя без різних засобів зв’язку. Пошта, телефон, радіо та інші комунікації перетворили людство в єдиний “живий” організм, змусивши його обробляти величезний потік інформації. Підручним засобом для обробки інформації став комп’ютер.
67856. Уровень материального благополучия сельской молодежи: оценка ситуации и анализ факторов 499.13 KB
  Осмысливая роль и значение молодежи в новых условиях, следует отдавать себе отчет в том, что молодежь может представлять собой не только потенциал позитивных перемен, но и возможный фактор социальной нестабильности.
67857. Особенности авиационных геоинформационных комплексов как объекта проектирования. Проблемы построения АСУ на базе ГИС-технологий 296.5 KB
  АГК это целый класс программного обеспечения такого же уровня как системы управления базами данных или языки программирования. Плюс к этому к каждому графическому элементу должна быть привязана информация в формате обычной базы данных для сведений по любому объекту.
67859. Методы проектирования авиационных геоинформационных комплексов на основе информационно-структурного подхода 203 KB
  Системный подход В.М.Глушкова является достаточно хорошей основой для создания компонентов ИГК РВ, работающих в статике. Однако основной чертой таких комплексов, какими являются ИГК РВ, является их работа в динамике. Они должны успевать отображать в реальном времени быстротечные процессы...
67860. ПЕРЕХОДНЫЕ ПРОЦЕССЫ И ОСНОВЫ СИНТЕЗА ЛИНЕЙНЫХ РАДИОТЕХНИЧЕСКИХ ЦЕПЕЙ 614.5 KB
  Современные радиотехнические системы часто включают в себя комплекс достаточно сложных электрических цепей среди которых разнообразные линейные цепи. Поэтому необходимо иметь ясное представление о таких процессах и уметь рассчитывать их для определенной цепи при заданном воздействии.
67861. Релігія як феномен духовної культури 73.5 KB
  Деномінація (лат. denominatio – наділення спеціальним ім’ям) – релігійне об’єднання, що перебуває в стадії організаційного оформлення; перехідний тип організації, яка має характеристики церкви( централізація, ієрархічні принципи управління, відмова від ізоляціонізму) та секти (визнання своєї виключності...