43559

Детали машин. Проектирование привода к конвейеру по схем

Курсовая

Производство и промышленные технологии

Выбор эл. двигателя и кинематический расчет. Расчет ременной передачи. Расчет редуктора. Расчет валов. Расчет элементов корпуса редуктора. Расчет шпоночных соединений. Расчет подшипников. Выбор смазки. Спецификация на редуктор.

Русский

2015-01-15

413 KB

19 чел.

Пояснительная записка к курсовому проекту «Детали машин»

Содержание:

Введение (характеристика, назначение).

  1.  Выбор эл. двигателя и кинематический расчет.
  2.  Расчет ременной передачи.
  3.  Расчет редуктора.
  4.  Расчет валов.
  5.  Расчет элементов корпуса редуктора.
  6.  Расчет шпоночных соединений.
  7.  Расчет подшипников.
  8.  Выбор смазки.
  9.  Спецификация на редуктор.

Введение.

Спроектировать привод к конвейеру по схеме. Мощность на ведомом валу редуктора P3 = 3 кВт и W3 = 2,3 рад/c вращения этого вала. 

1.Выбор эл. Двигателя и кинематический расчет.

  1.  Определяем общий привода

общ= 0,913

общ = р*п2*з = 0,96*0,992*0,97 =0,913               

- КПД ременной передачи

- КПД подшипников

- КПД зубчатой цилиндрической передачи

  1.  Требуемая мощность двигателя

Ртр=3,286 кВт

Ртр = Р3/общ = 3/0,913 = 3,286 кВт

Ртр - требуемая мощность двигателя

Р3 – мощность на тихоходном валу

  1.  Выбираем эл. двигатель по П61.

Рдв = 4 кВт

4А132 8У3  720 min-1

4А100S2У3  2880 min-1  

4А100L4У3  1440 min-1

4А112МВ6У3  955 min-1

4А132 8У3  720 min-1

  1.  Определяем общее передаточное число редуктора uобщ:

uобщ = 10,47

uобщ = nдв/n3 = 720*0,105/(2,3*) = 10,47   

nдв – число оборотов двигателя

n3 = 68,78 min-1

n3 – число оборотов на тихоходном валу редуктора

n3 = W3/0,105 = 2,3*/0,105 = 68,78 min-1   

W3 – угловая скорость тихоходного вала

  1.  Принимаем по ГОСТу для зубчатой передачи uз = 5, тогда передаточное число ременной передачи равно:

uрем = 2,094

uрем = uобщ / uз = 10,47/ 5 =2,094

  1.  Определяем обороты и моменты на валах привода:

1 вал - вал двигателя:

n1 = nдвиг =720 min-1          W1 = 0,105*n1 = 0,105*720 =75,6 рад/c

T1 = Pтреб/W1 = 3,286/75,6 = 43,466 Н*м

T1 – момент вала двигателя

2 вал – тихоходный привода - быстроходный редуктора

n2 = n1/uрем = 720/2,094 = 343,84 min-1

W2 = 0,105*n2 =0,105*343,84 = 36,1 рад/c

T2 = T1*uрем*р = 43,666*2,094*0,96 = 87,779 Н*м

3 вал - редуктора

n3 = n2/uз = 343,84/5 = 68,78 min-1

W3 = 0,105*n3 =0,105*68,78 = 7,22 рад/c

T3 = Ртр/W3 = 3290/7,22 = 455,67 Н*м

ВАЛ

n          min-1 

W              рад/c

T              Н*м

1

720

75,6

43,666

2

343,84

36,1

87,779

3

68,78

7,22

455,67

2.Расчет ременной передачи.

2.1 Определяем диаметр меньшего шкива D1 по формуле Саверина:

 D1 = (115…135)

P1 –мощность двигателя

n1 –обороты двигателя

V = 8,478 м/с

D1 = 225 мм

 D1 = 125*=221,39 мм по ГОСТу принимаем

2.2 Определяем скорость и сравниваем с допускаемой:

 V = *D1*n1/60 = 3,14*0,225*720/60 = 8,478 м/с    

При этой скорости выбираем плоский приводной ремень из хлопчатобумажной ткани при Vокр1  20 м/с

2.3 Определяем диаметр большего шкива D2 и согласуем с ГОСТ:

D2 = uрем *D1*(1-) = 2,094*225*(1-0,015) = 464,08 мм

D2 = 450 мм

-коэф. упругого скольжения

по ГОСТу принимаем D2 = 450 мм

2.4 Выбираем межосевое расстояние aрем для плоских ремней:

aрем= 1000 мм

 (D1+D2)  aрем    2,5(D1+D2)

675  aрем    1687,5    

2.5 Находим угол обхвата ремня :

  1800-((D2-D1)/ aрем)*600

= 166,50

  1800-((450-225)/1000)*600 = 1800-13,20 = 166,50

= 166,50 т.к.   1500 значит межосевое расстояние оставляем тем же.

2.6 Определяем длину ремня L:

L = 3072,4 мм

L = 2*aрем +(/2)*(D1+D2)+(D2-D1)2/ 4*aрем =2*1000+(3,14/2)*(450+225)+(450-225)2/4*1000 = 3072,4 мм

2.7 Определяем частоту пробега ремня :

= 2,579 c-1

= V/L = 8,478/3,0724 = 2,579 c-1

  4…5 c-1

2.8 Вычисляем допускаемое полезное напряжение [GF]:

[GF] = GFo*C*CV*Cp*C = 1,62*0,965*0,752*1*0,9 = 1,058 Мпа

GFo –по табл П11 GFo = 2,06-14,7*/Dmin  /Dmin = 0,03

[GF] = 1,058 Мпа

C -коэф. угла обхвата П12 : C = 0,965

CV –коэф. скорости CV = 1,04-0,0004*V2 = 0,752

Cp –коэф. режима нагрузки П13 : Cp = 1

C -коэф зависящий от типа передачи и ее расположения C = 0,9

GFo = 2,06-14,7*0,03 = 1,62 Мпа

2.9 Вычисляем площадь поперечного сечения ремня S:

S = b* = Ft/[GF] = 388,09/(1,058*106) = 0,0003668 м2 = 366,8 мм2

Ft = 2T1/D1 Ft –окружная сила   T1 –момент вала дв.

Ft = 2*43,66/0,225 = 388,09 H

S = 390 мм2

Найдем по таблицам П7 ширину b = 60мм  и длину =6,5 мм

B = 70 мм

По ГОСТу S = 60* 6,5 = 390 мм2  

2.10 Вычисляем силу давления на вал F для хлопчатобумажных ремней:

F = 1164,27 H

F  3Ft

F = 3*388,09 = 1164,27 H   

3. Расчет редуктора.

3.1 Используя П21 и П28 Назначаем для изготовления зубчатых колес сталь 45 с термической обработкой:

Колесо (нормализация)   Шестерня (улутшение)

НВ 180…220     НВ 240..280

G= 420 Мпа    G= 600 Мпа

NHo = 107     NHo = 1,5*107

G=110 Мпа    G=130 Мпа

Для реверсивной подачи

NFo = 4*106     NFo = 4*106

3.2 Назначая ресурс передачи tч 104 часов находим число циклов перемены напряжений NHE = NFE = 60tч*n3 60*104*68,78 = 4,12*107 т.к. NHE > NHO и NFE > NFO, то значения коэф. долговечности принимаем: KHL = 1 и KFL = 1

Допускаемые напряжения для колеса:

G= G*KHL = 420 МПа  G= G*KFL = 110 МПа

для шестерни:

G= G*KHL = 600 МПа  G= G*KFL = 130 МПа

3.3 Определения параметров передачи:

Ka = 4300   коэф. для стальных косозубых колес

ba = 0,2…0,8  коэф. ширины колеса ba = 0,4

bd = 0,5ba*(uз+1) = 0,5*0,4*(5+1) = 1,2  

по П25 KH  1,05 и так найдем межосевое расстояние aw:

aw = 180 мм

aw  Ka*(uз+1)= 25800*64,92-7 = 0,1679 м

по ГОСТу aw = 180 мм

mn = 2,5 мм

3.4 Определяем нормальный модуль mn:

mn = (0,01…0,02)aw = 1,8...3,6 мм по ГОСТу

= 150

3.5 Обозначаем угол наклона линии зуба :

= 8…200 принимаем = 150

Находим кол-во зубьев шестерни Z1:

Z1 = 23

Z1 = 2aw*cos/[mn(uз+1)] = 2*180*cos150/[2,5(5+1)] = 23,18

Принимаем Z1 = 23

Z2  = 115

Тогда Z2 = uз*Z1 = 5*23 = 115

Находим точное значение угла :

= 160 35/ 

cos = mn*Z1(uз+1)/2aw = 2,5*23*6/360 = 0,9583  

mt = 2,61 мм

3.6 Определяем размер окружного модуля mt:

mt = mn/cos =2,5/cos160 35/ = 2,61 мм

3.7 Определяем делительные диаметры d, диаметры вершин зубьев da, и диаметры впадин df шестерни и колеса:

шестерня     колесо

d1 = mt*Z1 = 2,61*23 = 60 мм  d2 = mt*Z2 = 2,61*115 = 300 мм

da1 = d1+2mn = 60+2*2,5 = 65 мм  da2 = d2+2mn = 300+5 = 305 мм

df1 = d1-2,5mn = 60-2,5*2,5 = 53,75 мм df2 = d2-2,5mn = 300-2,5*2,5 = 293,75 мм

d1 =  60 мм  d2 = 300 мм

da1 = 65 мм  da2 = 305 мм

df1 =  53,75 мм df2 =  293,75 мм

3.8 Уточняем межосевое расстояние:

aw = (d1+d2)/2 = (60+300)/2 = 180 мм

3.9 Определяем ширину венца зубчатых колес b:

b = a*aw = 0,4*180 = 72 мм

принимаем b2 = 72 мм для колеса, b1 = 75 мм

Vп = 1,08 м/с

3.10 Определение окружной скорости передачи Vп:

Vп = *n2*d1/60 = 3,14*343,84*60*10-3/60 = 1,08 м/с

По таблице 2 выбираем 8-мую степень точности

Ft = 3,04*103 Н

3.11 Вычисляем окружную силу Ft:

Ft = Pтр/Vп = 3286/1,08 = 3,04*103 Н

Fa = 906,5 H

Осевая сила Fa:

Fa = Ft*tg = 3,04*103*tg160 36/ = 906,5 H 

Fr = 1154,59 H

Радиальная (распорная) сила Fr:

Fr = Ft*tg/cos = 3040*tg200/cos160 36/ = 1154,59 H

3.12 Проверочный расчет на контактную и изгибную выносливость зубьев:

ZH  1,7

ZH  1,7   при = 160 36/  по таб. 3

  = 1,64

ZM = 274*103 Па1/2    по таб. П22

  [1,88-3,2(1/Z1+1/Z2)]cos = 1,64

Ze = 0,7

ZM = 274*103 Па1/2

Ze = == 0,78

= b2*sin/(mn) = 72*sin160 36//3,14*2,5 = 2,62 > 0,9

по таб. П25 KH = 1,05

по таб. П24 KH = 1,05

KH = 1,11

по таб. П26 KHV = 1,01

коэф. нагрузки KH = KH*KH *KHV = 1,11

GH = 371,84 МПа

3.13 Проверяем контактную выносливость зубьев:

GH=ZH*ZM*Ze=1,7*274*103*0,78*968,16=351,18 МПа << GHP=420МПа

3.14 Определяем коэф.

по таб. П25   KF = 0,91

по таб. 10    KF = 1,1

KFV = 3KHV-2 = 3*1,01-2 = 1,03  KFV = 1,03

KF = 1,031

Коэф. нагрузки:

KF = KF * KF * KFV  = 0,91*1,1*1,03 = 1,031

Вычисляем эквивалентные числа зубьев шестерни и колеса:

Z= 26,1

Z= 131

Z= Z1/cos3 = 23/0,9583 = 26,1

Z= Z2/cos3 = 115/0,9583 = 131

По таб. П27 определяем коэф. формы зуба шестерни Y 3,94  при Z= 26

По таб. П27 определяем коэф. формы зуба колеса Y 3,77 при Z= 131

Сравнительная оценка прочности зуба шестерни и колеса при изгибе:

G/Y = 130/3,94 = 33 МПа

G/Y = 110/3,77 = 29,2 МПа

Y = 0,884

Найдем значение коэф. Y:

Y = 1-0/1400 = 0,884

3.15 Проверяем выносливость зубьев на изгиб:

GF = YF*Y*KF*Ft/(b2mn) = 3,77*0,884*1,031*3040/(72*2,5) = 58 МПа << G

4. Расчет валов.

Принимаем [k]/ = 25 МПа для стали 45 и [k]// = 20 МПа для стали 35

dВ1= 28 мм

4.1 Быстроходный вал

d = 32 мм

d  = 2,62*10-2 м принимаем по ГОСТу dВ1= 28 мм

d = 35 мм

принимаем диаметр вала под манжетное уплотнение d = 32 мм

d = 44 мм

принимаем диаметр вала под подшипник d = 35 мм

принимаем диаметр вала для буртика d = 44 мм

4.2 Тихоходный вал:

dВ2= 50 мм

d = 54 мм

d  = 4,88*10-2 м принимаем по ГОСТу dВ2= 50 мм

d = 55 мм

принимаем диаметр вала под манжетное уплотнение d = 54 мм

принимаем диаметр вала под подшипник d = 55 мм

d = 60 мм

принимаем диаметр вала для колеса d = 60 мм

d= 95 мм

4.3 Конструктивные размеры зубчатого колеса:

диаметр ступицы d (1,5…1,7) d = 90…102 мм

lст = 75 мм

длина ступицы lcт  (0,7…1,8) d = 42…108 мм

0 = 7мм

толщина обода 0 (2,5…4)mn = 6,25…10 мм

е = 18 мм

Колесо изготовляем из поковки, конструкция дисковая.

Толщина e  (0,2…0,3)b2 = 14,4…21,6 мм

G-1 = 352 МПа

4.4 Проверка прочности валов:

Быстроходный вал: G-1 0,43G = 0,43*820 = 352 МПа

4.5 Допускаемое напряжение изгиба [GИ]-1 при [n] = 2,2  K = 2,2 и kри = 1:

[GИ]-1 = 72,7 МПа

[GИ]-1 = [G-1/([n] K)] kри = 72,7 МПа

YB = 849,2 H

4.6.1 Определяем реакции опор в плоскости zOy :

YA = 305,4 H

YB = Fr/2+Fad1/4a1 = 849,2 H

YA = Fr/2-Fad1/4a1 = 305,4 H

XA = XB = 1520 H

4.6.2 Определяем реакции опор в плоскости xOz :

XA = XB = 0,5Ft = 0,5*3040 = 1520 H 

4.6.3 Определяем размер изгибающих моментов в плоскости yOz:

M = 15,27 Н*м

MA = MB = 0

M= 42,46 Н*м

M= YA*a1 = 305,4*0,05 = 15,27 Н*м

M= YВ*a1 = 849,2*0,05 = 42,46 Н*м

(MFrFa)max= 42,46 H

в плоскости xOz:

M= 76 Н*м

MA = MB = 0

M= XA*a1 = 1520*0,05 = 76 Н*м

MFt = 76 H

4.6.4 Крутящий момент T = T2 = 87,779 Н*м

Ми =87,06 Н*м

4.7 Вычисляем суммарный изгибающий момент Ми :

Gи = 5,71 МПа

Ми = = 87,06 Н*м

Значит : Gи = 32Mи/d= 5,71 МПа

Gэ111 = 8,11 МПа

к = 16T2/(d) = 16*87,779/(3,14*0,053753) = 2,88 МПа

4.8 Gэ111== 8,11 МПа

4.9 Тихоходный вал:

G-1 = 219,3 МПа

Для стали 35 по таб. П3 при d < 100 мм GB = 510 МПа

 G-1 0,43G = 0,43*510 = 219,3 МПа

4.10 Допускаемое напряжение изгиба [GИ]-1 при [n] = 2,2  K = 2,2 и kри = 1:

[GИ]-1 = 45,3 МПа

[GИ]-1 = [G-1/([n] K)] kри = 45,3 МПа

YB = 2022,74 H

4.10.1 Определяем реакции опор в плоскости yOz :

YA = -869,2 H

YB = Fr/2+Fad2/4a2 = 2022,74 H

YA = Fr/2-Fad2/4a2 = -869,2 H

XA = XB = 1520 H

4.10.2 Определяем реакции опор в плоскости xOz :

XA = XB = 0,5Ft = 0,5*3040 = 1520 H 

4.10.3 Определяем размер изгибающих моментов в плоскости yOz:

M = -40,85 Н*м

MA = MB = 0

M= 95,07 Н*м

M= YA*a2 = -869,2*0,047 = -40,85 Н*м

M= YВ*a2 = 2022,74*0,047 = 95,07 Н*м

(MFrFa)max= 95,07 H

в плоскости xOz:

M= 71,44 Н*м

MA = MB = 0

M= XA*a2 = 1520*0,047 = 71,44 Н*м

MFt = 71,44 H

Крутящий момент T = T3 = 455,67 Н*м

Ми =118,92 Н*м

4.11 Вычисляем суммарный изгибающий момент Ми :

Gи = 7,28 МПа

Ми = = 118,92 Н*м

Значит : Gи = 32Mи/d= 7,28 МПа

Gэ111 = 28,83 МПа

к = 16T3/(d) = 16*318,47/(3,14*0,0553) = 13,95 МПа

4.12 Gэ111== 28,83 МПа < 45,25 МПа

5. Расчет элементов корпуса редуктора.

= 9 мм

Корпус и крышку редуктора изготовим литьем из серого чугуна.

5.1 Толщина стенки корпуса   0,025aw+1…5 мм = 4,5+1…5 мм 

1 = 8 мм

5.2 Толщина стенки крышки корпуса 1  0,02aw+1…5 мм = 3,6+1…5 мм

s =14 мм

5.3 Толщина верхнего пояса корпуса s  1,5 = 13,5 мм

t = 20 мм

5.4 Толщина нижнего пояса корпуса t  (2…2,5) = 18…22,5 мм

С = 8 мм

5.5 Толщина ребер жесткости корпуса C  0,85 = 7,65 мм

dф = 18 мм

5.6 Диаметр фундаментных болтов dф  (1,5…2,5) = 13,5…22,5 мм

К2 = 38 мм

5.7 Ширина нижнего пояса корпуса К2 2,1 dф = 2,1*18 = 37,8 мм

dk = 10 мм

5.8 Диаметр болтов соединяющих корпус с крышкой dk  (0,5…0,6)dф 

s1 = 12 мм

5.9 Толщина пояса крышки s1  1,51 = 12 мм

K = 30 мм

5.10 Ширина пояса соединения корпуса и крышки редуктора около подшипников

K1 = 25 мм

K  3dk = 3*10 = 30 мм

dkп=12 мм

5.11 Диаметр болтов для подшипников dkп  0,75dф = 0,75*18 = 13,5 мм

5.12 Диаметр болтов для крепления крышек подшипников

d= d = 10 мм

dп  (0,7..1,4) = 6,3…12,6 мм   

5.13 Диаметр обжимных болтов можно принять 8…16 мм

dkc = 8 мм

5.14 Диаметр болтов для крышки смотрового окна

dkc =  6…10 мм

dпр = 18 мм

5.15 Диаметр резьбы пробки для слива масла

dпр  (1,6…2,2) = 14,4…19,8 мм

y = 9 мм

5.16 Зазор y:

y  (0,5…1,5) = 4,5…13,5 мм

y1 = 20 мм

5.17 Зазор y1:

y= 35 мм

y1  (1,5…3)  = 13,5…27 мм

y= (3…4) = 27…36 мм

5.18 Длины выходных концов быстроходного и тихоходного валов:

l1 = 50 мм

l2 = 85 мм

l1  (1,5…2)dB1 = 42…56 мм  

l2  (1,5…2)dB2 = 75…100 мм

5.19 Назначаем тип подшипников

средняя серия для быстроходного вала и легкая для тихоходного

d = d = 35 мм, D1 = 80 мм, T= 23 мм

d = d = 55 мм, D2 = 100 мм, T= 23 мм

X/ = X// = 20 мм

размер X  2dп, принимаем X/ = X// = 2d= 2*10 = 20 мм

l= l= 35 мм

l= l = 12 мм

размер l= l 1,5 T= 1,5*23 = 35,5 мм

l= l = 8…18 мм

l=15 мм

осевой размер глухой крышки подшипника

l 8…25 мм

a2 = 47 мм

5.20 Тихоходный вал:

a2  y+0,5lст= 9+0,5*75 = 46,5 мм

а1 = 50 мм

быстроходный вал

a1  l+0,5b1 = 12+0,5*75 = 49,5 мм

ВР = 335 мм

Lp= 470 мм

НР = 388 мм

5.21 Габаритные размеры редуктора:

ширина ВР

ВР  l2+ l+2,5T+2y +lст+ l+l1 = 85+35+ 2,5*23+18+75+15+50 = 335,5 мм

Длина Lp

Lp  2(K1++y1)+0,5(da2+da1)+aw = 2(25+9+20)+0,5(305+60)+ 180 = 470  мм

Высота НР

НР  1+y1+da2+y+t = 8+20+305+35+20 = 388 мм

6. Расчет шпоночных соединений.


6.1 Быстроходный вал dB1= 28 мм по П49 подбираем шпонку bh = 87

l =  45мм

lp = 37 мм

l = l1-3…10 мм = 45 мм

lp = l-b = 45-8 = 37 мм

допускаемые напряжения смятия [Gсм]:

[Gсм] = 100…150 МПа

Gсм  4,4T2/(dlph) = 53,25 МПа < [Gсм]

Выбираем шпонку 8745 по СТ-СЭВ-189-75

6.2 Тихоходный вал dB2= 50 мм по П49 подбираем шпонку bh = 149

l =  80 мм

lp = 66 мм

l = l2-3…10 мм = 80 мм

lp = l-b = 80-14 = 66 мм

допускаемые напряжения смятия [Gсм]:

[Gсм] = 60…90 МПа

Gсм  4,4T3/(dВ2 lph) = 67,5 МПа

Выбераем шпонку 14980 по СТ-СЭВ-189-75

6.3 Ступица зубчатого колеса d2= 60 мм по П49 подбираем шпонку bh = 1811

l = 70 мм

lp = 52 мм

l = lст-3…10 мм = 70 мм

lp = l-b = 70-18 = 52 мм

допускаемые напряжения смятия [Gсм]:

Gсм  4,4T3/(d2 lph) = 58,4 МПа < [Gсм]

Выбераем шпонку 181170 по СТ-СЭВ-189-75

7.Расчет подшипников

7.1 Быстроходный вал

FrA = 1580,17 H

Fa = 906,5 H

FrB = 1741,13 H

FrA = = 1580,17 H

FrB = = 1741,13 H 

Т.к. FrB > FrA то подбор подшипников ведем по опоре В

7.2 Выбираем тип подшипника т.к.

 (Fa/FrB)*100% = (1580,17/1741,13)*100% = 52,06% > 20…25%  то принимаем радиально- упорные роликоподшипники

7.3 Определяем осевые составляющие реакции подшипников при е = 0,319 для средней серии при d = 35 мм:

SA = 0,83e*FrA = 0,83*0,319*1580,17 = 418,38 H

SB = 0,83e*FrB = 0,83*0,319*1741,13 = 461 H

7.4 По таблице 5 находим суммарные осевые нагрузки:

т.к. SA < SB и Fа = 906,5 > SB-SA = 42,62 H то

FaA = SA = 418,38 H и FaB = SA+Fa = 1324,88 H (расчетная)

Lh = 15*103 часов

7.5 Долговечность подшипника Lh:

Lh = (12…25)103 часов

V = 1 т.к. вращается внутреннее кольцо П45

Kб = 1,6  П46

Кт = 1   П47

При FaB/VFrB = 1324,88/1*1741,13 = 0,76 > e=0,319  по таб. П43 принимаем

X = 0,4

Y = 1,881

n = n2 = 343,84 min-1

= 10/3

7.6 Вычислим динамическую грузоподъемность подшипника

Стр = (XVFrB+YFaB)KбKт(6*10-5n2Lh)1/ = 24,68 кН

7.7 По таб. П43 окончательно принимаем подшипник 7307 средней серии

d = 35 мм

D = 80 мм

Tmax = 23 мм

С = 47,2 кН

nпр > 3,15*103 min-1

7.8 Тихоходный вал

FrA = 1750,97 H

Fa = 906,5 H

FrB = 2530,19 H

FrA = = 1750,97 H

FrB = = 2530,19 H 

Т.к. FrB > FrA то подбор подшипников ведем по опоре В

7.9 Выбираем тип подшипника т.к.

 (Fa/FrB)*100% = (906,5/2530,19)*100% = 35,83 % > 20…25%  то принимаем радиально- упорные роликоподшипники

7.10 Определяем осевые составляющие реакции подшипников при е = 0,411 для легкой серии при d = 55 мм:

SA = 0,83e*FrA = 0,83*0,411*1750,97 = 597,3 H

SB = 0,83e*FrB = 0,83*0,411*2530,19 = 863,1 H

7.11 По таблице 5 находим суммарные осевые нагрузки:

т.к. SA < SB и Fа = 906,5 > SB-SA = 265,8 H то

FaA = SA = 597,3 H и FaB = SA+Fa = 1500,2 H (расчетная)

7.12 При FaB/VFrB = 1500,2/1*2530,19 = 0,523 > e=0,411 по таб. П43 принимаем

X = 0,4

Y = 1,459

n3 = 59,814 min-1

= 10/3

7.13 Вычислим динамическую грузоподъемность подшипника при Lh = 15*103часов,   V=1, Kб = 1,6, Кт = 1, = 10/3

Стр = (XVFrB+YFaB)KбKт(6*10-5n3Lh)1/ = 13,19 кН

7.7 По таб. П43 окончательно принимаем подшипник 7211 легкой серии

d = 55 мм

D = 100 мм

Tmax = 23 мм

С = 56,8 кН

nпр > 4*103 min-1

8. Выбор смазки.

Для тихоходных и среднескоростных редукторов смазки зубчатого зацепления осуществляется погружением зубчатого колеса в маслянную ванну кратера, обьем которой Vk=0,6Р3 =1,8 л.          V = 1,08 м/с

Масло И-100А, которое заливается в кратер редуктора с таким расчетом, чтобы зубчатое колесо погрузилось в масло не более чем на высоту зуба.


 

А также другие работы, которые могут Вас заинтересовать

22664. γ – випромінювання та ефект Месбауера 46 KB
  γ – випромінювання та ефект Месбауера Явище γ – випромінювання ядер полягає в тому що ядро випромінює γ – квант без зміни А кількість нуклонів та Z кількість протонів. Гама – випромінювання виникає за рахунок енергії збудження ядра. Спектр γ – випромінювання завжди дискретний через дискретність ядерних рівнів. Особливо інтенсивне γ – випромінювання з’являється коли β – розпад у високій степені заборонений в основний стан кінцевого ядра і дозволений в один із збуджених станів.
22665. Класифікація ядерних реакцій. Реакція термоядерного синтезу 69 KB
  Ядерна реакція типу: де а А частинки до реакції;b В частинки після реакції;Q – енергія що виділилась після реакції екзотермічна реакція вид енерг ендотермічна реакція погл енерг пружне розсіяння . Реакції описуються за даними диференціального перерізу розсіяння в елемент тілесного кута : і інтегрального перерізу : . Можна виділити пружні і непружні реакції Складне compound ядро коли реакція йде у дві стадії: спочатку утворюється складне ядро С – воно повинно жити досить довго по ядерним масштабам – і яке потім...
22666. Ланцюгова реакція поділу ядер. Принцип роботи ядерних реакторів 161 KB
  Ланцюгова реакція ділення відбувається в середовищі в якій відбувається розмноження нейтронів також відбувається сповільнення дифузія поглинання таке середовище має назву – активна зона. Важливою фізичною величиною характеризуючою інтенсивність розмноження нейтронів являється коефіцієнт К розмноження нейтронів в середовищі. Кчисло утворившихся в одному акті поділу нейтронів що потім беруть участь в наступних реакціях поділу ядер. Він залежить від процесу уповільнення нейтронів та процесу дифузії які визначають пройденний шлях...
22667. Загальні принципи систематики субядерних частинок і їх взаємодії 28 KB
  В природі існує чотири фундаментальні взаємодії: сильна електромагнітна слабка та гравітаційна найслабша. Кожна взаємодія має свій квант який є переносчиком взаємодії. На даний момент відкритим лишається питання про квант передачі гравітаційної взаємодії так звану гіпотетичну частинку гравітон.
22668. Методи визначення числа Авогадро (досліди Перрена) 38 KB
  Методи визначення числа Авогадро досліди Перрена 1ий метод Перрена: досліджував броунівський рух частинок усі частинки зважені в рідині знаходяться в постійному хаотичному русі. В неї не входить миттєва швидкість броунівської частинки яку поміряти неможливо. Замість неї входить довжина прямолінійного відрізка що з’єднує положення частинки у два різні моменти часу: x2 = 2kTBt де k – стала Больцмана В – рухливість частинки де η – коефіцієнт внутрішнього тертя а α – радіус частинки частинка має форму кульки наближено. Перрен...
22669. Совершенствование процедуры аттестации госслужащих МКУ ЦБ МУО Орджоникидзевского района город Уфа 1.59 MB
  Аттестация государственных служащих декларируется современным законодательством в качестве обязательной нормы для определения уровня профессиональной подготовки и соответствия государственного служащего занимаемой должности государственной службы, а также для решения вопроса о присвоении ему квалификационного разряда.
22670. Релігієзнавство як галузь гуманітарного знання 65.5 KB
  Релігія і в наші часи продовжує залишатися суттєвим елементом духовного життя суспільства. Мільйони наших сучасників сприймають її, як природне завершення особистого життєвого досвіду, з хвилюванням читають Біблію, Коран як книги, що написані спеціально для них
22671. Досліди Франка і Герца по визначенню потенціалів іонізації 536 KB
  Докази квантування рівнів енергії електронів в атомі були отримані в дослідах Франка і Герца 1913. Порція енергії 49 еВ передається атому ртуті а енергія електрона зменшується на ту ж величину. При подальшому збільшенні потенціалу U зона зіткнень електронів з атомами ртуті зсувалась до катода К і електрони вже встигали набрати достатньо енергії після зіткнення для подолання UЗ ділянка CD. Знаючи початкову і кінцеву енергію електрона тобто його енергію до і після непружнього співудару можна вирахувати положення збуджених рівнів...
22672. Методи реєстрації і спектрометрії ядерних випромінювань 196.5 KB
  Під ядерним випромінюванням розуміють частинки що утворюються в наслідок ядерних перетворень. Частинки випромінення поділяють на 3 групи: 1. Заряджені частинкиер альфачастинки осколки ділення. Нейтральні частинкинейтрони.