4389

Использование массивов в языке С++

Реферат

Информатика, кибернетика и программирование

Использование массивов в языке С++ Одномерные массивы Массив (array) – это набор элементов, способных хранить данные одного типа. Каждый элемент хранения называется элементом массива. Объявляя массив, необходимо сначала указать тип храним...

Русский

2012-11-18

43.5 KB

9 чел.

Использование массивов в языке С++

  1.  Одномерные массивы

Массив (array) – это набор элементов, способных хранить данные одного типа. Каждый элемент хранения называется элементом массива. Объявляя массив, необходимо сначала указать тип хранимых данных, а затем имя массива и его размер. Размером массива называется количество его элементов, указываемое в квадратных скобках.

 Пример 5.1. long LongArray[25];

В примере 5.1. объявлен массив с именем LongArray из 25-ти элементов типа long. Поскольку каждой переменной типа long необходимы четыре байта, весь объявленный набор займет непрерывную область памяти размером 100 байт.

К каждому из элементов можно обратиться по его номеру, расположенному в квадратных скобках после имени массива. Номера элементов массива начинаются с нуля. Следовательно, первым элементом массива LongArray будет LongArray[0], вторым – LongArray[1], последним – LongArray[24].

При записи значения в элемент массива компилятор вычисляет необходимую область памяти на основании размера типа элемента и размера массива. Если необходимо записать значение в переменную LongArray[5], являющуюся шестым элементом массива, компилятор умножает индекс 5 на размер переменной (в данном случае 4 байта). Затем текущий указатель смещается на 20 байтов от начального адреса массива, и записывается новое значение.

Если попробовать записать значение в элемент LongArray[50], то компилятор, проигнорировав тот факт, что такого элемента не существует, вычислит смещение от начала массива (200 байт), а затем запишет значение по этому адресу. Здесь могут оказаться другие данные, и запись нового значения может иметь непредсказуемые последствия.

Небольшой массив переменных встроенных типов можно инициализировать при объявлении. Для этого после имени массива помещают знак равенства и заключенный в фигурные скобки список значений, отделяемых запятой. Например:

int IntegerArray[5] = {10, 20, 30, 40, 50};

Если размер массива не указан, но список значений присутствует, то будет создан и инициализирован массив достаточного размера, чтобы содержать все перечисленные значения. Таким образом, эта строка аналогична предыдущей:

int IntegerArray[ ] = {10, 20, 30, 40, 50};

Нельзя инициализировать количество элементов, превосходящее объявленный размер массива:

int IntegerArray[5] = {10, 20, 30, 40, 50, 60};

Такая строка приведет к ошибке во время компиляции, поскольку объявлен массив для пяти элементов, а инициализировать пытались шесть. Но следующая запись вполне допустима:

int IntegerArray[5] = {10, 20};

В данном случае объявлен массив из пяти элементов, а инициализированы только два: IntegerArray[0] и IntegerArray[1].

Массивы могут иметь любые имена, допустимые для переменных. Имена массивов и переменных не могут совпадать в пределах одной области видимости. При объявлении количества элементов можно использовать не только константу, но и перечисление. Такой подход облегчает контроль над количеством элементов всех массивов, позволяя указать их размеры в едином месте.

Листинг 5.1. Задание размера массива с помощью перечислений

#include <iostream>

int main(){

enum WeekDays {Sun, Mon, Tue, Wed, Thu, Fri, Sat, DaysInWeek};

int ArrayWeek[DaysInWeek]={10, 20, 30, 40, 50, 60, 70};

std::cout<<"The value at Tuesday is: "<<ArrayWeek[Tue]<<" \n";

std::cout<<"The value at Friday is: "<<ArrayWeek[Fri]<<" \n";

char resp;

std::cin>>resp;

return 0;

}

РЕЗУЛЬТАТ

 The value at Tuesday is: 30

The value at Friday is: 60

  1.   Многомерные массивы

Можно создать массив более одной размерности. Каждая размерность представляет собой дополнительный индекс массива. Следовательно, двумерный массив имеет два индекса, трехмерный – три и т.д. Массив может иметь любое количество размерностей, но в большинстве случаев достаточно одной или двух.

Многомерный массив можно инициализировать тем же способом, что и одномерный, например

int theArray[5][3] =

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

Чтобы было понятнее, значения при инициализации можно разделить фигурными скобками:

 int theArray[5] [3] = {

{1, 2, 3},

{4, 5, 6},

{7, 8, 9},

{10, 11, 12},

{13, 14, 15} };

Компилятор проигнорирует внутренние фигурные скобки, но они сделают набор чисел нагляднее.

  1.  Массивы символов (строки)

Строка в стиле С++ представляет собой массив символов, завершающийся пустым значением null. Строку можно объявлять инициализировать, как и любой другой массив, например:

Char Greeting[ ] = {‘H’,’e’,’l’,’l’,’o’, ‘ ‘, ‘W’, ‘o’,’r’,’l’,’d’, ‘\0’};

В данном случае объявлен массив символов Greeting, который инициализирован набором символов. Последний символ ‘\0’ является пустым символом (символом null). Именно он служит для функций языка С++ признаком конца строки. Хотя такой «посимвольный» подход и работоспособен, но труден для вывода и порождает слишком много ошибок. Язык С++ допускает использование более кратких форм. Например, объявление предыдущей строки может выглядеть так

Char Greeting[ ] = “Hello World”;

В последнем случае добавлять символ null в конце строки не нужно, компилятор сделает это сам (однако нужно помнить, что он там присутствует).

При объявлении строковой переменной необходимо удостовериться, что ее размер достаточен для выполнения поставленной задачи. Длину строки составляет количество символов строки, включая символы пробела и завершающий нулевой символ. Например, строка Hello World занимает 12 байт: Hello – 5 байт, пробел – 1, World – 5 и символ null – еще один.

Можно также создавать и неинициализированные символьные массивы. Однако при этом следует удостовериться, что в буфер будет записано данных не больше его вместимости. Для этого используется метод cin.get().

Листинг 5.2. Заполнение массива максимальным количеством символов с помощью метода cin.get()

// Применение метода cin.get()

#include <iostream>

using namespace std;

int main(){

char buffer[80];

cout<<"Enter the string: ";

cin.get(buffer, 79);

cout<<"Here's the buffer: "<<buffer<<endl;

char resp;

cin>>resp;

return 0;

}

Первый аргумент метода cin.get() – это буфер, объявленный ранее как массив символов (букв). Второй аргумент – максимально количество вводимых символов. В данном случае – 79, чтобы учесть завершающий символ null. Третий параметр (символ завершения ввода) необязателен, поскольку по умолчанию признаком завершения является новая строка. При вводе пробелов, символов табуляции или других непечатаемых символов они также войдут в состав строки. Символом новой строки заканчивается ввод. Ввод 79-ти символов также приведет к завершению ввода.


 

А также другие работы, которые могут Вас заинтересовать

75375. ЛАЗЕРНЫЕ ДОПЛЕРОВСКИЕ ИЗМЕРИТЕЛИ СКОРОСТИ 58.5 KB
  В соответствии с 2 относительная методическая погрешность измерения путевой скорости по разности частот. Принципиальная схема лазерного доплеровского измерителя скорости ЛДИС с опорным лучом Расщепитель пучка Лазерный пучок Рассеянное излучение частота Требования к лазеру: Минимальное поглощение и рассеяние излучения лазера в атмосфере включая...
75376. ЛАЗЕРНЫЕ ДАЛЬНОМЕРЫ 94.5 KB
  Импульсный метод – измерение времени распространения короткого импульса лазерного излучения до объекта и обратно. Фазовый метод – измерение разности фаз у колебаний мощности модулированного лазерного излучения на выходе из источника и возвратившегося после отражения
75377. ПРИНЦИПЫ ОПТИЧЕСКОЙ БЛИЖНЕПОЛЬНОЙ МИКРОСКОПИИ 185 KB
  Соотношение неопределенностей Неопределенность координаты фотона не может быть меньше чем длина волны. Если декремент затухания сделать большим то после подстановки в 1 получается следующий результат: неопределенность координаты намного меньше длины волны.
75378. ПРИНЦИПЫ ЗАПИСИ ИНФОРМАЦИИ НА КОМПАКТ-ДИСКЕ И ЕЕ СЧИТЫВАНИЯ 281 KB
  Этапы производства оптических дисков фотолитография процесс изготовления штампа диска. Считывание информации с поверхности диска Принцип считывания информации: регистрация изменения мощности отражённого света. Различие между дисками только для чтения и дисками однократной многократной записи заключается в способе формирования питов.
75379. Преимущества оптического волокна как среды для передачи информации 225.5 KB
  Полезная ширина полосы одиночно излученного светового импульса определяется импульсной передаточной функцией рассматриваемого оптического волокна ОВ. Учитывая что оптическая ширина полосы волокна определяется импульсной передаточной функцией этого волокна можно показать что измеренная на уровне 3 дБ по мощности оптическая ширина полосы Во оценивается с помощью показателя полная ширина полосы на уровне половины от максимума...
75380. Затухание оптического излучения в волокне 167.5 KB
  Существовало две глобальных проблемы при разработке оптических систем передачи данных: 1) источник света и 2) носитель сигнала. Первая разрешилась с изобретением лазеров в 1960 году, вторая - с появлением высококачественных оптических кабелей в 1970 году
75381. ХРОМАТИЧЕСКАЯ ДИСПЕРСИЯ В ОДНОМОДОВОМ ВОЛОКНЕ И УШИРЕНИЕ ПЕРЕДАВАЕМОГО ИМПУЛЬСА 113 KB
  В полосе прозрачности 850 нм более длинные волны распространяются с большей скоростью чем короткие например излучение на длине волны 865 нм распространяется в кварцевом стекле с большей скоростью чем излучение на длине волны 835 нм. Совсем наоборот происходит в полосе прозрачности 1550 нм: более короткие длины волн распространяются с большими скоростями чем более длинные излучение с длиной волны 1535 нм распространяется быстрее чем с длиной волны 1560 нм. Спектр оптического сигнала имеет конечную ширину ...
75382. МЕЖМОДОВАЯ ДИСПЕРСИЯ В МНОГОМОДОВОМ ВОЛОКНЕ 74 KB
  Импульсы излучения для мод более высоких порядков появляются на выходе из волокна позже Траектории лучей в градиентном волокне Многомодовое волокно со ступенчатым поперечным распределением показателя преломления Групповая скорость распространения света в волокне...
75383. МЕХАНИЗМЫ ВОЗНИКНОВЕНИЯ ПОТЕРЬ ИЗ-ЗА НЕСОВЕРШЕНСТВА ВОЛОКНА 50 KB
  Главная цель производителя оптоволокна получить более точную геометрию волокна. Три параметра как показала практика оказывают наибольшее влияние на характеристики сростка: концентричность сечений сердцевины и оболочки допуск на диаметр оболочки и собственный изгиб волокна. Улучшение этой характеристики при производстве волокна уменьшает шанс неточного расположения сердцевины что способствует получению сростков с меньшими потерями.