4391

Некоторые простые алгоритмы в языке С++

Контрольная

Информатика, кибернетика и программирование

Некоторые простые алгоритмы в языке С++ Поиск максимального (или минимального) числа из выборки чисел Предположим, что мы имеем массив из n элементов. Необходимо найти элемент с максимальным (или минимальным) числовым значением. Задача поиска ...

Русский

2012-11-18

61.5 KB

7 чел.

Некоторые простые алгоритмы в языке С++

  1.  Поиск максимального (или минимального) числа из выборки чисел

Предположим, что мы имеем массив из n элементов. Необходимо найти элемент с максимальным (или минимальным) числовым значением. Задача поиска максимального элемента может быть решена с помощью следующего алгоритма.

Рис. 7.1. Алгоритм поиска максимального элемента массива

 Алгоритм поиска минимального элемента имеет ту же структуру. Только вместо условия: a[i]>Max – нужно записать условие: a[i]<Min. Программа поиска максимального и минимального элементов массива приведена в листинге 7.1.

Листинг 7.1. Поиск максимального и минимального элементов массива

# include <iostream>

int main(){

using namespace std;

int i, n;

float Min, Max;

float a[100];

cout<<"Input n: ";

cin>>n;

cout<<endl;

cout<<"Input array";

cout<<endl;

for (i=0; i<n; i++){

 cin>>a[i];

}

Min=a[0];

Max=a[0];

for (i=0; i<n; i++){

 if (a[i]<Min)

  Min=a[i];

 if (a[i]>Max)

  Max=a[i];

}

cout<<endl;

cout<<"Max: " << Max << endl;

cout<<"Min: " << Min << endl;

char Res;

cin>>Res;

return 0;

}

  1.  Пузырьковая сортировка (bubble sort)

С помощью операции сортировки можно расставить элементы числового массива в порядке их возрастания (или убывания). Существуют различные методы сортировки. Самым простым (но не самым быстрым) является пузырьковый метод. Он заключается в том, что два соседних элемента меняются местами, если они нарушают заданный порядок. При многократном повторении этой операции наименьший элемент «всплывает на поверхность как пузырек» – то есть попадает в начало выборки. Один из простых вариантов программы, реализующих данный метод, приведен в листинге 7.2.

Листинг 7.2. Пузырьковая сортировка элементов массива

# include <iostream>

void exch(double &a, double &b)

{ double t=a; a=b; b=t; }

void compexch(double &a, double &b)

{ if (a>b) exch(a, b); }

void bubble(double x[], int r)

{ for (int i=0; i<r-1; i++)

for (int j=0; j<r-1; j++)

 compexch(x[j], x[j+1]);

}

void main()

{

using namespace std;

int i, n;

double a[100];

cout<<"Input n: ";

cin>>n;

cout<<endl<<"Input array"<<endl;

for (i=0; i<n; i++){

 cin>>a[i];

}

cout<<endl;

bubble(a, n);

for (i=0; i<n; i++){

 cout<<a[i]<<endl;

 }

 char Res;

 cin>>Res;

}

В данной программе используется функция exch, которая меняет местами значения двух переменных («exchange» – на английском означает «обмен»). Функция может иметь несколько аргументов, но возвратить она способна максимум только одно значение. В данном случае функция exch вообще не возвращает ничего. Локальные переменные, которыми манипулирует функция, стираются из памяти сразу после ее выполнения.  Чтобы изменения сохранились, необходимо использовать ссылки.

Если задана переменная x, то оператор &x вернет нам адрес этой переменной в оперативной памяти компьютера. Ссылка (reference) – это псевдоним адресата. Все, что делается со ссылкой, происходит и с объектом, который находится по указанному адресу.

Ссылки используются также и в функции compexch, которая сравнивает значения двух переменных и, если они стоят не в том порядке, вызывает функцию exch.

В функции exch используется локальная переменная t для временного хранения первоначального значения переменной  a. Можно обойтись и без нее, если использовать следующий вариант функции exch.

void exch(double &a, double &b)

{ a=a+b; b=a-b; a=a-b; }

Эта программа использует меньше памяти, однако требуется комментарий, чтобы объяснить, для чего она предназначена.

  1.  Вычисление чисел Фибоначчи

Функция может вызывать сама себя – это свойство называется рекурсией. Рекурсию можно использовать для вычисления чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, … Эти числа определяются с помощью рекуррентной формулы

.     (7.1)

В листинге 7.3 приведена программа непосредственной рекурсивной реализации рекуррентного соотношения (7.1). Однако эта программа весьма неэффективна. В ней количество рекурсивных вызовов для вычисления  равно . Но теория чисел Фибоначчи утверждает, что  приближенно равно  при больших , где  – золотое сечение (для обозначения золотого сечения принято использовать букву  в честь известного афинского скульптора Фидия). Таким образом, для программы из листинга 7.3 время этого элементарного вычисления определяется экспоненциальной зависимостью.

Листинг 7.3. Числа Фибоначчи (рекурсивная реализация)

# include <iostream.h>

int F(int i) {

if (i<1) return 0;

if (i==1) return 1;

return F(i-1)+F(i-2);

}

void main() {

int k, fib;

cout<<"Input number:";

cin>>k;

fib=F(k);

cout<<"F="<<fib;

 char res;

cin>>res;

}

Можно легко вычислить первые  чисел Фибоначчи за время, пропорциональное значению , используя массив, как показано в листинге 7.4.

Листинг 7.4. Числа Фибоначчи (динамическое программирование)

# include <iostream.h>

int F(int i) {

static int knownF[46];

if (knownF[i]!=0) return knownF[i];

int t=1;

if (i<0) return 0;

if (i>1) t=F(i-1)+F(i-2);

return knownF[i]=t;

}

void main() {

int k, fib;

cout<<"Input number:";

cin>>k;

fib=F(k);

cout<<"F="<<fib;

 char res;

cin>>res;

}

Числа возрастают экспоненциально, поэтому размер массива невелик. Например, =1836311903 – наибольшее число Фибоначчи, которое может быть представлено 32-разрядным целым, поэтому достаточно использовать массив из 46 элементов.

Этот подход предоставляет непосредственный способ получения численных решений для любых рекуррентных соотношений. В случае с числами Фибоначчи можно даже обойтись без массива и ограничиться только первыми двумя значениями, однако для многих других часто встречающихся рекуррентных соотношений необходимо поддерживать массив, хранящий все известные значения.

Рекуррентное соотношение – это рекурсивная функция с целочисленными значениями. Любую такую функцию можно вычислить, вычисляя все значения функции, начиная с наименьшего, используя на каждом шаге ранее вычисленные значения для подсчета текущего значения. Эта технология называется восходящим динамическим программированием (bottom-up dynamic programming). Она применима к любому рекурсивному вычислению при условии, что мы можем себе позволить хранить все ранее вычисленные значения.

Нисходящее динамическое программирование (top-down dynamic programming) – еще более простая технология, которая позволяет автоматически выполнять рекурсивные функции при том же (или меньшем) количестве итераций, что и восходящее динамическое программирование. При этом рекурсивная программа используется для сохранения каждого вычисленного ею значения и для проверки сохраненных значений во избежания повторного вычисления любого из них. Программа из листинга 7.4 – механически измененная программа из листинга 7.3, в которой за счет применения нисходящего динамического программирования достигается резкое снижение времени выполнения.


 
   i=0, n, 1

[i]>Max

   Max=a[i] 

Да

Нет

    Вводим

массив a[n] из n элементов

  Начало

     Задаем

    Max=a[0]

 Выводим на

экран значение

         Max

  Конец


 

А также другие работы, которые могут Вас заинтересовать

16345. Прохождение сигналов через нелинейные цепи 113.39 KB
  Прохождение сигналов через нелинейные цепи Методические указания к лабораторной работе Лабораторная работа по исследованию преобразования спектров сигналов нелинейных цепях используется в процессе изучения курса €œРадиотехнические цепи и сигналы€ студентами ...
16346. Линейная фильтрация случайных процессов 370.01 KB
  Линейная фильтрация случайных процессов Методические указания к лабораторной работе Лабораторная работа по исследованию прохождения случайных процессов через линейные цепи с постоянными параметрами используется в процессе изучения курса Радиотехнические цеп
16347. ИЗУЧЕНИЕ ЭФФЕКТА ХОЛЛА В ПОЛУПРОВОДНИКАХ 1.03 MB
  ЦЕЛЬ РАБОТЫ: определение постоянной Холла и концентрации носителей тока в исследуемом полупроводнике. ОБОРУДОВАНИЕ Миниблок Эффект Холла в котором находится тонкая пластинка германия помещенная в зазор сердечника электромагнита. Регулируемый источник пос
16348. ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА 1.27 MB
  ЦЕЛЬ РАБОТЫ: знакомство с одним из методов измерения электрической емкости конденсатора; экспериментальная проверка формул для расчета емкости батареи конденсаторов при их параллельном и последовательном соединениях. ОБОРУДОВАНИЕ Регулируемый источн...
16349. ИССЛЕДОВАНИЕ ИНДУКЦИОННОГО РЕГУЛЯТОРА И ФАЗОРЕГУЛЯТОРА 192.5 KB
  ИССЛЕДОВАНИЕ ИНДУКЦИОННОГО РЕГУЛЯТОРА И ФАЗОРЕГУЛЯТОРА 1. Цель работы 1.1. Изучить работу асинхронной машины с фазным ротором в режиме индукционного регулятора и фазорегулятора. 1.2. Ознакомиться с принципиальными схемами индукционного регулятора и фазорегулятор
16350. ИССЛЕДОВАНИЕ ОДНОФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ 66 KB
  ИССЛЕДОВАНИЕ ОДНОФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ 1. ЦЕЛЬ РАБОТЫ. 1.1.Ознакомиться с конструкцией принципом действия и режимами работы однофазных асинхронных двигателей. 1.2.Приобрести практические навыки в определении параметров и исследовании р...
16351. ИЗУЧЕНИЕ И ИССЛЕДОВАНИЕ СВОЙСТВ АСИНХРОННОГО ДВИГАТЕЛЯ С КОРОТКОЗАМКНУТЫМ РОТОРОМ 103.12 KB
  ИЗУЧЕНИЕ И ИССЛЕДОВАНИЕ СВОЙСТВ АСИНХРОННОГО ДВИГАТЕЛЯ С КОРОТКОЗАМКНУТЫМ РОТОРОМ 1. Цель работы 1.1. Ознакомление с конструкцией трехфазного асинхронного двигателя с короткозамкнутым ротором. 1.2. Проведение опытов холостого хода короткого замы
16352. ИСПЫТАНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ С ФАЗНЫМ РОТОРОМ 200 KB
  ИСПЫТАНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ С ФАЗНЫМ РОТОРОМ ЦЕЛЬ РАБОТЫ 1.1. Ознакомиться на разобранном образце по учебнику и конспекту лекций с конструкцией асинхронного двигателя с фазным ротором. 1.2. Получить практические навыки пуска асинхронного двигателя с ...
16353. РАБОТА СИНХРОННОГО ГЕНЕРАТОРА НА ИНДИВИДУАЛЬНУЮ НАГРУЗКУ 280 KB
  РАБОТА СИНХРОННОГО ГЕНЕРАТОРА НА ИНДИВИДУАЛЬНУЮ НАГРУЗКУ ЦЕЛЬ РАБОТЫ Ознакомиться по учебнику и конспекту лекций с конструкцией основных видов синхронных машин. Приобрести практические навыки в исследовании синхронных машин. П...