4457

Геометрические характеристики координатных осей

Реферат

Математика и математический анализ

Геометрические характеристики координатных осей. Главные оси и главные моменты инерции При повороте осей координат центробежный момент инерции меняет знак, а следовательно, существует такое положение осей, при котором центробежный момент равен нулю....

Русский

2012-11-20

46 KB

9 чел.

Геометрические характеристики координатных осей.

Главные оси и главные моменты инерции

При повороте осей координат центробежный момент инерции меняет знак, а следовательно, существует такое положение осей, при котором центробежный момент равен нулю.

Оси, относительно которых центробежный момент инерции сечения обращается в нуль, называются главными осями, а главные оси, проходящие через центр тяжести сечения - главными центральными осями инерции сечения.

Моменты инерции относительно главных осей инерции сечения называются главными моментами инерции сечения и обозначаются через I1 и I2 причем I1>I2. Обычно, говоря о главных моментах, подразумевают осевые моменты инерции относительно главных центральных осей инерции.

Предположим, что оси u и v главные. Тогда

.

Отсюда

.

(6.32)

Уравнение (6.32) определяет положение главных осей инерции сечения в данной точке относительно исходных осей координат. При повороте осей координат изменяются также и осевые момента инерции. Найдем положение осей, относительно которых осевые моменты инерции достигают экстремальных значений. Для этого возьмем первую производную от Iu по α и приравняем ее нулю:

,

отсюда

.

К тому же результату приводит и условие dIv /dα. Сравнивая последнее выражение с формулой (6.32), приходим к заключению, что главные оси инерции являются осями, относительно которых осевые моменты инерции сечения достигают экстремальных значений.

Для упрощения вычисления главных моментов инерции формулы (6.29) - (6.31) преобразовывают, исключая из них с помощью соотношения (6.32) тригонометрические функции:

.

(6.33)

Знак плюс перед радикалом соответствует большему I1, а знак минус - меньшему I2 из моментов инерции сечения.

Укажем на одно важное свойство сечений, у которых осевые моменты инерции относительно главных осей одинаковы. Предположим, что оси y и z главные (Iyz=0), а Iy=Iz. Тогда согласно равенствам (6.29) - (6.31) при любом угле поворота осей α центробежный момент инерции Iuv=0, а осевые Iu=Iv.

Итак, если моменты инерции сечения относительно главных осей одинаковы, то все оси, проходящие через ту же точку сечения, являются главными и осевые моменты инерции относительно всех этих осей одинаковы: Iu=Iv=Iy=Iz. Этим свойством обладают, например, квадратные, круглые, кольцевые сечения.

Формула (6.33) аналогична формулам (3.25) для главных напряжений. Следовательно, и главные моменты инерции можно определять графическим способом методом Мора.

Изменение моментов инерции при повороте осей координат

Предположим, что задана система осей координат и известны моменты инерции Iz, Iy и Izy фигуры относительно этих осей. Повернем оси координат на некоторый угол α против часовой стрелки и определим моменты инерции той же фигуры относительно новых осей координат u и v.

Рис. 6.8.

Из рис. 6.8 следует, что координаты какой-либо точки в обеих системах координат связаны между собой соотношениями

Момент инерции

.

Следовательно,

.

(6.29)

.

(6.30)

Центробежный момент инерции

.

(6.31)

Из полученных уравнений видно, что

,

т. е. сумма осевых моментов инерции при повороте осей координат остается величиной постоянной. Поэтому, если относительно какой-либо оси момент инерции достигает максимума, то относительно перпендикулярной ей оси он имеет минимальное значение.

Список литературы:

Наумова Ж.Л. Начертательная геометрия.: Учебное пособие для самостоятельной работы – Хабаровск: Изд-во Хабар. , 2003

Кузнецов Н.С. Начертательная геометрия. М. "Высшая школа",1969


 

А также другие работы, которые могут Вас заинтересовать

41630. Однофазный трансформатор 36.1 KB
  Паспортные данные исследуемого трансформатора: Собрали схему.При проведении опыта записали характеристики трансформатора в пределах U1=100÷210 B V1 1 W1 V2 220 В АТр Тр Результаты измерений Результаты вычислений B К 100 2015 00165 08 04848 293847 60606 530059 5 068 130 235 00875 12 01054 15673 14857 14774 55 088 150 279 10375 2 00128 1858 1445 14448 53 102 170 313 12 22 00107 1527 1416 14159 54 115 190 349 1375 3 001148 1586 1381 13809 54 129 210 3865 1625 38 00111...
41631. Сервисное программное обеспечение и технологии MS Windows 1022.47 KB
  Вывод приобретел практические навыков при работе с сервисным программным обеспечением, изучение технологий обмена данными в операционной системе MS Windows
41632. ЧИСЕЛЬНЕ ІНТЕГРУВАННЯ ФУНКЦІЙ 55.64 KB
  Хід роботи: Згідно з варіантом одержати значення визначеного інтегралу методами прямокутників трапецій і парабол. Для наближеного інтегрування використаємо формулу трапецій і формулу Сімпсона Формула трапецій: b ∫fxdx=hffb 2fx1 fx2 fxn1 b Формула Сімпсона: ∫fxdx=h 3[f4fx12fx24fx3 2fx4...
41633. Базовый логический элемент И-НЕ на КМДП-транзисторах 163.93 KB
  Его можно переводить в открытое состояние подавая управляющее напряжение большее чем максимальное входное положительное напряжение причем и в таком режиме работы ток затвора будет равен нулю.
41634. Обчислення визначників. Розв’язування систем лінійних алгебраїчних рівнянь методом Крамера 239.53 KB
  Розвязування систем лінійних алгебраїчних рівнянь методом Крамера Виконала: студентка ІГСН групи ДК 11 Бойчук Оксана Перевірила: Ярка Уляна Борисівна м. В даному випадку матриця коефіцієнтів А і вектор вільних членів b мають вигляд: А= b= Рис. Розвязування систем лінійних алгебраїчних рівнянь методом Крамера Виконала: студентка ІГСН групи ДК 11 Бойчук Оксана Перевірила: Ярка Уляна Борисівна м....
41635. ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО БУХГАЛТЕРСКОМУ УЧЕТУ 707.68 KB
  Наименование хозяйственных средств Сумма руб. Наименование источников хозяйственных средств Сумма руб. № п п Наименование хозяйственных средств Сумма руб. № п п Наименование источника хозяйственных средств Сумма руб.
41636. Попередні обчислення в тріангуляції 1.68 MB
  Попередні обчислення в тріангуляції Загальні відомості Перед початком зрівнювання тріангуляції необхідно виміряні та зрівняні на станціях напрямки зприести до центрів знаків редукувати їх на рефернцеліпсоїд а потім на площину в проекції ГауссаКрюгера. Попереднє вирішення трикутників та обчислення сферичних надлишків Для того щоб обчислити поправки у виміряні напрямки за центрування теодоліта та редукції візирних цілей необхідно знайти спочатку довжини сторін трикутників. Довжини сторін обчислюють до цілого міліметра: Сферичний надлишок...
41637. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА 76.01 KB
  2 используемая для определения коэффициента вязкости жидкости по методу Стокса представляет собой два стеклянных цилиндрических сосуда 1 наполненных жидкостью различной вязкости в данной работе определяется вязкость только одной жидкости; уровень поверхности жидкости обозначен цифрой 2. Пинцетом аккуратно опускают в сосуд с глицерином маленький шарик по оси симметрии сосуда плотность шарика больше плотности жидкости. Расстояние между поверхностью жидкости 2 и верхним указателем 3 подбирают так чтобы на этом участке скорость шарика...
41638. Процессы крепления и поддержания капитальных и подготовительных горных выработок. Анкерная крепь 230.72 KB
  Шахтный ствол горнодобывающего предприятия является ключевым элементов, от исправного состояния которого зависит эксплуатация всего предприятия. Поэтому состоянию крепи шахтных стволов, их техническому обслуживанию, а также проведению современного качественного ремонта, должно уделяться особое внимание.