44662

Адсорбционная очистка масляных дистиллятов

Лабораторная работа

Химия и фармакология

При этом к адсорбентам предъявляются следующие требования: высокие селективность разделения и адсорбционная емкость; хорошие кинетические характеристики, особенно в жидкофазных процессах

Русский

2014-03-28

92.64 KB

3 чел.

Лабораторная работа №8

Тема: Адсорбционная очистка масляных дистиллятов

  1.  Теоретическая часть

Адсорбционную очистку масляных фракций применяют для получения высококачественных масел различного уровня вязкости, деароматизированных жидких парафинов и других продуктов различного назначения. В основе процесса лежит разделение высококипящих нефтепродуктов за счет различной адсорбируемости их компонентов на поверхности адсорбента.

Адсорбционное разделения различных веществ на практике осуществляют силикагелями, алюмосиликатами, активными углями, активной окисью алюминия, цеолитами, природными глинистыми породами. При этом к адсорбентам предъявляются следующие требования: высокие селективность разделения и адсорбционная емкость; хорошие кинетические характеристики, особенно в жидкофазных процессах, где коэффициенты диффузии в 103 меньше, чем в газах; отсутствие каталитической активности к компонентам разделяемой смеси.

Селективность адсорбции возникает часто за счет специфического взаимодействия молекул и поверхности адсорбента через электронно-донорное звено функциональной группы молекулы (π-связь) и выдвинутый положительный заряд (протонизированный водород гидроксильной группы, обменный катион и др.) поверхности. Так на поверхности силикагеля основными центрами специфической молекулярной адсорбции молекул с локально сосредоточенной электронной плотностью являются свободные гидроксильные группы. Поэтому же, являясь кислотой протонного типа (электрон-акцептором), по кислотно-основному механизму специфического взаимодействия силикагель образует на своей поверхности π -комплексы с основанием (электродонором) и селективнее адсорбирует соединения с функциональными группами из смеси с н-алканами, у которых проявляется только неспецифическое взаимодействие с поверхностью силикагеля. Поверхность углеводородных адсорбентов (сажа, активированные угли) не является носителем кислотных центров, не вступает в специфическое взаимодействие с адсорбированными молекулами углеводородов.

Наибольший вклад специфического взаимодействия при адсорбции у цеолитов в силу особенностей их структуры, поверхность активной окиси алюминия, насыщенная сильными апротонными кислотными центрами, также специфически взаимодействует с молекулами, имеющими π -связь.

Адсорбционная емкость зависит от величины обшей поверхности адсорбента и объема его пор и характеризуется удельной поверхностью и удельным объемом пор.

Величины удельной поверхности промышленных адсорбентов-си-ликагелей, активированных углей, активной окиси алюминия, природных глин составляют соответственно 300-750; 1300-1700; 170-220; 15-260 м2/г. Суммарный удельный объем пор соответственно 0,25-1,25; 0,67-0,80; 0,60-1,0; 0,17-0,45 см3/г.

Кинетические характеристики. Процесс жидкофазной адсорбции на пористых твердых телах складывается из следующих стадий: подвода вещества к внешней поверхности адсорбента, диффузии молекул по транспортным порам, процесса адсорбции на поверхности адсорбента.

Первая стадия определяется внешнедиффузионными факторами и не представляет интереса с точки зрения влияния природы адсорбента на адсорбцию, на вторую – оказывает влияние размер транспортных пор. Третья стадия зависит от адсорбционной емкости и селективности абсорбента. Кинетические характеристики жидкофазной адсорбции определяются внутренней диффузией молекул компонентов раствора, зависящей от величины среднего радиуса транспортных пор. Для различных марок силикагелей, активированных углей, активной окиси алюминия и природных глин средний радиус пор находится в пределах 1-7; 0,7-1,7; 6-10; 0,28-10 нм. При уменьшении среднего радиуса пор силикагеля диффузия молекул ароматических углеводородов в порах уменьшается. Регулировать и улучшать свойства адсорбентов можно варьированием их пористой структуры или изменением химической природы поверхности, за счет чего достигается избирательность адсорбции. При очистке нефтепродуктов с помощью адсорбентов имеет место физическая адсорбция, при которой сорбаты могут быть выделены при десорбции. В первую очередь адсорбируются полярные соединения, затем неполярные вещества, в молекулах которых под действием силового поля молекул адсорбента возникают индуцированные диполи, и далее – неполярные вещества, адсорбируемость которых определяется дисперсионным взаимодействием молекул адсорбента и адсорбируемого вещества. На этом основана адсорбционная очистка масляного сырья, призванная удалить из него значительные количества смол и полициклических ароматических углеводородов, ухудшающих эксплутационные свойства масел и их восприимчивость к композициям присадок.

2. Аппаратура и материалы

1. Лабораторная установка для адсорбционной очистки сырья и отгона растворителя (рисунок).

2. Образец: дистиллята.

3. Растворитель - бензин.

4. Силикат марки АСК, высушенный при 180°С в течение пяти часов.

  1.  Порядок выполнения работ

Перед проведением адсорбционной очистки проводят анализ сырья: определяют вязкость при температуре 50°С, температуру застывания, оптическую плотность.

Сырьем установки адсорбционной очистки масел является маловязкий масляный дистиллят. В качестве адсорбента используется синтетический алюмосиликат или крупнопористый силикагель А.С.К. Для улучшения контакта сырья с адсорбентом применяется разбавление сырья бензином, который применяют также в качестве десорбента. Процесс очистки проводят при температуре 30-40°С (в зависимости от вязкости сырья) в колонке диаметром 10 мм и высотой 600 мм.

Силикагель весом 30 г засыпают в колонку при непрерывном постукивании ее стенок для плотной упаковки зерен адсорбента по всей высоте колонки, после чего осуществляют смачивание адсорбента растворителем. На технических весах взвешивают 30 г дистиллята, разбавляют его 30 г бензина. Полученный раствор переносят в емкость, связанную с адсорбционной колонкой через дозировочный насос (рисунок 8.1), который со скоростью 125 мл/ч подает раствор вниз адсорбционной колонки.

Рисунок 8.1. Установка адсорбционной очистки:

1 – колонка, 2 – мерник,

3 – насос, 4 - отгонная колба,

5 – термометр,

6 – холодильник, 7 – приемник.

Пройдя слой адсорбента, раствор очищенного дистиллята через перепускной кран поступает в предварительно взвешенную колбу для отгона растворителя. Полученный после отгона растворителя продукт (рафинат 1) взвешивают, выливают из колбы в стакан и анализируют, отогнанный растворитель, конденсируясь в холодильнике 6, собирается в приемнике.

После того как раствор сырья прошел через адсорбционную колонку, осуществляют стадию десорбции, для чего повышают температуру в колонке до 60-70°С и из емкости со скоростью 150-200 мл/ч начинает подачу 60 г бензина. Раствор десорбата собирается в колбе для отгона растворителя. Освобожденный от растворителя рафинат-2 по сравнению с рафинатом 1 обогащен ароматическими углеводородами. После определения массы рафинат 2 анализируют.

4. Особенности техники безопасности при проведении работы

1. Включить в сеть нагревательные приборы только при выключенном общем рубильнике.

2.Соблюдать правила работы с легковоспламеняющимися жидкостями.

3. Соблюдать общую инструкцию по технике безопасности при работе

Контрольные вопросы

1. Теоретические основы процесса адсорбции и ее сущность.

2. Структура адсорбентов.

3. Виды промышленных адсорбентов.

4. Адсорбируемость углеводородов на различных адсорбентах, силы адсорбционного взаимодействия.

5. Использование адсорбционных процессов в практике промышленного производства,

6. Изменение качества масла в зависимости от глубины адсорбционной очистки.


 

А также другие работы, которые могут Вас заинтересовать

44363. ОСОБЕННОСТИ ХИМИЧЕСКИХ СВОЙСТВ АТОМАРНОГО КИСЛОРОДА И ВОДОРОДА 229.5 KB
  Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно...
44364. Технологія будівельного виробництва. Методичні вказівки 234 KB
  Склад робіт по винесенню проекту в натуру: складання схеми розбивки траси і рекогносцировці дільниці; винесення вісі колектора та двох крайніх дрен паралельних; одноразовий вимір та провіжування вісей колектора та двох крайніх дрен; провіжування вісей проміжних дрен з лінійним проміром по створах віх на крайніх дренах; висотна привязка нульового пікету колектора або одиничної дрени; Винос в натуру вісі колектора або одиночної дрени виконується за допомогою теодоліта і мірної стрічки від траси провідної мережі вищого порядку і...
44365. Основные понятия теории информации применительно к автоматизированному управлению в энергосистемах 115 KB
  Энергосистема - сложный объект, и управление ею может быть эффективным лишь при наличии автоматизированной системы диспетчерского управления (АСДУ). Под АСДУ понимается человеко-машинная система, обеспечивающая автоматизированный сбор и обработку оперативно-диспетчерской (ОДИ)
44366. Выбор и обоснование оптимальной схемы доставки груза из Западно – Сибирского региона до речного порта Якутск 2.98 MB
  Правила перевозок грузов в прямом смешанном сообщении. Динамика перерабатываемых грузов ООО Речной порт Якутск. А все они преследуют одну цель максимальное удовлетворение потребности народного хозяйства в перевозках грузов и пассажиров при сокращении издержек транспортных и ускорении их доставки в пункт назначения. Для комплексного развития и эксплуатации всех видов транспорта необходимо не только определить общую потребность страны в грузовых и пассажирских перевозках но и распределить их между видами транспорта и отдельными...
44367. Стрелково-пушечное вооружение в условиях воздействия сплошного спектра термомеханических нагрузок 2.82 MB
  От этих немаловажных факторов и зависит его работоспособность ведь если не осмотреть и не проверить то можно пойти в бой с неисправным вооружением а если не почистить и не смазать после применения это может привести к коррозии а в свою очередь к заклиниванию частей и механизмов. Продукты коррозии загрязняют детали снижают механические характеристики и портят внешний вид вооружения. Существует некоторая критическая относительная влажность воздуха выше которой при прочих равных условиях наступает резкое возрастание коррозии металла....
44368. СОВЕРШЕНСТВОВАНИЕ УПРАВЛЕНИЯ КРЕДИТНЫМ РИСКОМ (НА ПРИМЕРЕ «ВТБ 24» (ЗАО)) 1008 KB
  За счет этого источника формируется основная часть чистой прибыли отчисляемой в резервные фонды и идущей на выплату дивидендов акционерам банка. Средства банка формируются за счет клиентских денег на расчетных текущих срочных и иных счетах; межбанковского кредита; средств мобилизованных банком во временное пользование путем выпуска долговых ценных бумаг и т. Кредит стал основой банковского дела и базисом по которому судили о качестве и о работе банка. Особого внимания заслуживает процесс управления кредитным риском потому что от его...
44369. Роль связей с общественностью в повышении конкурентоспособности группы компаний «Евразия» 228 KB
  Во второй практической главе « Программа по повышению конкурентоспособности ГК «Евразия» дается общая характеристика ГК «Евразия», предоставляется конкурентный анализ деятельности ГК «Евразия», и разрабатывается концепция программы по повышению конкурентоспособности ГК «Евразия» и оценка ее эффективности.
44370. Покрытие пиковых нагрузок энергосистем 1.07 MB
  Электроэнергетика России имея общую мощность электростанций 210 млн. Так основные параметры и единичная мощность основного генерирующего оборудования и линий электропередач используемых в отрасли находятся на уровне развитых стран мира. кВтч а установленная мощность электростанций увеличится примерно на 50 процентов и достигнет 320млн. Первая на Енисее Красноярская ГЭС с бетонной плотиной длиной 1100м и высотой 120 м начала работать на полную мощность и теперь ее 12 гидроагрегатов вырабатывают в год в среднем 204 млрд.