44672

Основы механики электропривода

Лекция

Физика

Работа электромеханической системы электропривод – исполнительный механизм происходит при взаимодействии различных сил и моментов. Один из моментов создаётся электродвигателем, он приводит систему в движение и называется электромагнитным моментом

Русский

2014-03-28

35.44 KB

65 чел.

ТЕМА ЛЕКЦИИ 3

Основы механики электропривода

ПЛАН ЛЕКЦИИ

                                                                                                                                                               

1. Режимы работы электропривода, динамический момент.

2. Уравнение движения электропривода.

3. Время пуска двигателя в холостом режиме и под нагрузкой.

4. Время торможения и изменения скорости электропривода.

          Режимы работы электропривода, динамический момент

                                                                                          

         Работа электромеханической системы  электропривод –  исполнительный механизм происходит при взаимодействии различных сил и моментов. Один из моментов создаётся электродвигателем, он приводит систему в движение и называется электромагнитным моментом  , другие силы тормозят её (систему) и создают статический момент сопротивления – М. За положительное направление статического момента принимают направление, противоположное моменту двигателя.

Электропривод работает    в двух  режимах:

1. установившийся или статический режим,это режим при котором скорость привода не изменяется;

2. переходный или динамический режим, это режим при котором скорость изменяется.

         Переходный режим может возникнуть в следующих случаях:

1. при изменении параметров двигателя, например, изменение  сопротивления в цепи ротора; изменение числа пар полюсов статора и т.д.;

2. при изменении нагрузки механизма, например изменение подачи насоса, изменение величины сил трения якоря по грунту и т.д.;        

3. при изменении параметров судовой сети, например, при уменьшении  величины напряжения или частоты тока во время включения электродвигателей большой мощности.

В переходном режиме электропривод переходит от одного установившегося режима к другому, при этом изменяются скорость, момент, и ток электродвигателя.

В установившемся режиме электромагнитный момент равен статическому моменту и противоположен ему по направлению,

и  привод работает с постоянной скоростью

 .                                                (3-1)

 В переходном режиме происходит ускорение  или замедление привода и возникает инерционный или динамический момент, который двигатель должен преодолеть.

Во время работы в переходном режиме, к электромагнитному моменту двигателя   и статическому моменту  добавляется динамический момент , равный

,                                          (3-2)

где:суммарный момент инерции всех элементов привода, приведенный к скорости вращения вала двигателя

        – угловая скорость;          – угловое ускорение.

 

Появление динамического момента объясняется действием сил инерции всех  частей электропривода и исполнительного механизма.

 Например, в электроприводе лебедки динамический момент появляется вследствие инерции якоря или ротора электродвигателя, шестерней редуктора, барабана лебёдки и т.д..

Динамический момент увеличивает время пуска и остановки электропривода, а так же время достижения установившейся скорости.

Для уменьшения динамического момента в двигателях специального исполнения  уменьшают диаметр ротора  и одновременно увеличивают длину ротора, с целью сохранения мощности двигателя. Такие двигатели применяют в электроприводах грузоподъемных механизмов. Их применение позволяет сократить время пуска и остановки электропривода, а значит, повысить производительность грузовых лебедок и кранов.

Серии таких электродвигателей называются крановыми (название произошло  от грузового крана). 

Уравнение движения электропривода

Уравнение движения электропривода учитывает все силы и моменты, действующие в переходных режимах и имеет следующий вид:

.                                                 (3-3)

      Уравнение  движения (3-3)  показывает, что электромагнитный момент двигателя   уравновешивается:                                                     

статическим  моментом на его валу и

инерционным динамическим моментом  .

      В расчётах принимается, что при работе электропривода массы тел и их моменты инерции  не изменяются.

      

Из анализа уравнения движения (3-3) следует, что:

       1)  при  , происходит ускорение электропривода;

  1. при , происходит замедление электропривода;
  2. при  , ускорение равно нулю,  привод работает в установившемся режиме с постоянной скоростью

.

            Момент, двигателя, положительный, если он направлен в сторону движения привода. Если момент двигателя направлен в противоположную сторону,  то он отрицательный.

         Знак минус перед статическим моментом указывает на  тормозящее действие механизма.

       При спуске груза,  раскручивании сжатой пружины, движении электротранспорта под уклон  и т.п. перед статическим моментом  ставится знак плюс, так как статический момент направлен в сторону движения  привода и способствует движению исполнительного механизма.

       Правая часть уравнения (3-3) динамический  (или инерционный) момент –   проявляется только при переходных режимах, то есть когда изменяется скорость привода.

        При ускорении привода динамический момент направлен против движения, а при торможении в сторону движения, так как он поддерживает движение за счёт инерции.

        Из уравнения движения электропривода (3-3) рассчитываются времена: пуска, разгона и торможения электропривода.

 

Время пуска двигателя в холостом режиме и под нагрузкой

          

          Цикл пуска электропривода включает пуск и торможение ЭД. Для некоторых судовых механизмов пуски и торможения повторяются очень часто и оказывают существенное влияние на их работу. При расчете электроприводов механизмов необходимо знать длительность переходных процессов.

Время переходных процессов определим из уравнения движения.

t =                         (3-4)     

Если динамический момент = const решение значительно упрощается. Найдем частное решение для наиболее типичных режимов работы электропривода.

Пуск двигателя в холостом режиме

 

          Многие асинхронные двигатели с короткозамкнутым ротором при разгоне до рабочих скоростей развивают электромагнитный момент, который незначительно изменяется за время разгона. Поэтому этот разгонный момент можно принять равным среднему значению.

,

где; = 1.2 2.

          Для рассматриваемого режима (пуск в холостую)

,

момент инерции, равен только моменту инерции двигателя, так как двигатель не нагружен механизмом. Из уравнения  (3-4) получим tхх время разгона двигателя без нагрузки до скорости при холостом ходе

tхх = ,                                          (3-5)        

где:  скорость в режиме холостого хода;  

         = 2.

Пуск двигателя под нагрузкой

            

          В отличие от пуска без нагрузки, при пуске нагруженного двигателя действует постоянный статический момент сопротивления, создаваемый механизмом  = , и поэтому ЭД разгоняется  пусковым моментом  за времядо установившейся скорости, соответствующей моменту нагрузки. Из уравнения  (3-4) получим время разгонадо установившейся скорости

Момент инерции, при пуске нагруженного двигателя, равен приведенному моменту инерции, так как двигатель  нагружен механизмом.

.                                           (3-6)

Время торможения и изменения скорости электропривода

Разгон двигателя от скорости  до

         Разгон двигателя от скорости  до  по действием динамического момента, =   развиваемого двигателем, происходит за время , которое получим из уравнения  (3-4),

= .                                             (3-7)

Свободный выбег

        Свободный выбег  это время, через которое останавливается электропривод после отключения от сети. Движение электропривода происходит только под действием статического момента, так электромагнитный момент двигателя= 0. Воспользуемся уравнением   (3-4) для определения времени свободного выбега:

                                      (3-8)

        Время торможения электропривода               

        Время свободного выбега за счет торможения статическим моментом бывает очень большим и часто не удовлетворяет требованиям электропривода и исполнительного механизма. Поэтому применяют различные способы электрического и механического торможения. Созданный тормозной момент ускоряет остановку привода.

       Статический момент может быть как тормозным и движущим. Это нужно учитывать при определении динамического момента.

Для данного случая статистический момент является тормозным. Время полной остановки определяется из уравнения (3-4).

 

.                                       (3-9)

Время изменения скорости электропривода

         Рассмотрим изменение скорости двигателя от  до  при линейном законе изменения динамического момента во времени.

         Если двигатель работает на линейном участке, а механическая характеристика и нагрузка на валу двигателя изменяется по линейному закону, то динамический момент будет линейной функцией скорости.

В этом случае конечная скорость   достигается через время

=

=

 Получим время, через которое изменяется скорость  двигателя от значения  до :

                               (3-10)

 

Путь рабочего органа за время пуска и торможения

          Для некоторых электрических приводов бывает необходимо определить угловой путь, который проходит точка рабочего органа за время пуска или торможения. При жесткой связи электродвигателя (ЭД) с рабочим органом этот путь будет пропорционален углу поворота вала ЭД. Путь за бесконечно малый промежуток времени определяется выражением:

Проинтегрировав получим:

                                           (3-11)

По этой формуле можно найти угол поворота вала ЭД при разгоне или торможении. И затем, зная передаточное отношение рассчитать угол поворота.


 

А также другие работы, которые могут Вас заинтересовать

14217. Музичний мультфільм 57 KB
  Тема. Музичний мультфільм Навчальна мета: на прикладі поспівки Кицин дім закріпити поняття про довгі і короткі звуки провести розспівування; вчити уважно слухати музику; визначати настрій характер музики; дати поняття про мультфільм; закріпити пісню
14218. Музичний жанр 30 KB
  Музичний жанр Жанр це історично сформований різновид музичних творів який визначається за різноманітними ознаками: характером тематики засобами вираження складу виконавців. Загальноприйнятим є підрозділ музики на такі основні жанри як симфонічний оперний камер
14219. Композиторы Philippe de Vitry и Adam de la Halle 471.78 KB
  РЕФЕРАТ по предмету МУЗЫКА на тему: КОМПОЗИТОРЫ Philippe de Vitry И Adam de la Halle Москва 2012 г. СОДЕРЖАНИЕ Philippe de Vitry Adam de la Halle ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА Филипп де Витри фр. Philippe de Vitry также Филипп Витрийский 1291 1361 католический епископ епа...
14220. Музыка и театры во время блокады 24.13 KB
  Музыка и театры во время блокады И музыканты и артисты как и все жители осажденного города терпели лишения и муки голода и холода умирали. Однако голос искусства не умолк Кольцо блокады замкнулось 8 сентября 41го. В этот день в Театре музыкальной комедии пр...
14221. Старинная двухчастная форма 24.5 KB
  Третья лекция. Тема: старинная двухчастная форма. Старинная двухчастная форма одна из стержневых конструкций эпохи. Стержневые положения: однотемная однофактурная; логика тонального плана определяет специфику этой формы: первая часть T D вторая ...
14222. Барочная трехчастная форма; барочная многочастная форма 26.5 KB
  Лекция четвертая. Тема: Барочная трехчастная форма; барочная многочастная форма Барочная трехчастная форма. тематически однородная форма где первая и вторая части кадансируют на побочных ступенях а третья возвращает к тонике. Еще одна каденция на побочной ступен...
14223. Вариационная форма 30 KB
  Лекция шестая. Тема: вариационная форма. Введение. Два основных способа построения композиции: повторность и контраст. В вариационной форме повторность и контраст соединяются. Количество вариаций важный момент. В эпоху барокко очень развита числовая симво
14224. Бах. «Гольдберг вариации» 24 KB
  Лекция седьмая. Тема: Бах. Гольдберг вариации. Цикл из 30ти вариаций. Ария тема для вариаций существует в качестве Сарабанды переписанной рукой Анны Магдалены в Клавирной книжечке 1725 года. Ария существовала по крайней мере за десять лет до того как Бах во...
14225. Старинное (куплетное) рондо 24.5 KB
  Лекция восьмая. Тема: Старинное куплетное рондо. Определение. Куплетное рондо это форма где устойчивая часть по французской традиции rondeau/рондо проводится неоднократно 2 3 5 7 9 11 и более раз в главной тональности и по преимуществу неизменно а перемежающиеся...