44672

Основы механики электропривода

Лекция

Физика

Работа электромеханической системы электропривод – исполнительный механизм происходит при взаимодействии различных сил и моментов. Один из моментов создаётся электродвигателем, он приводит систему в движение и называется электромагнитным моментом

Русский

2014-03-28

35.44 KB

51 чел.

ТЕМА ЛЕКЦИИ 3

Основы механики электропривода

ПЛАН ЛЕКЦИИ

                                                                                                                                                               

1. Режимы работы электропривода, динамический момент.

2. Уравнение движения электропривода.

3. Время пуска двигателя в холостом режиме и под нагрузкой.

4. Время торможения и изменения скорости электропривода.

          Режимы работы электропривода, динамический момент

                                                                                          

         Работа электромеханической системы  электропривод –  исполнительный механизм происходит при взаимодействии различных сил и моментов. Один из моментов создаётся электродвигателем, он приводит систему в движение и называется электромагнитным моментом  , другие силы тормозят её (систему) и создают статический момент сопротивления – М. За положительное направление статического момента принимают направление, противоположное моменту двигателя.

Электропривод работает    в двух  режимах:

1. установившийся или статический режим,это режим при котором скорость привода не изменяется;

2. переходный или динамический режим, это режим при котором скорость изменяется.

         Переходный режим может возникнуть в следующих случаях:

1. при изменении параметров двигателя, например, изменение  сопротивления в цепи ротора; изменение числа пар полюсов статора и т.д.;

2. при изменении нагрузки механизма, например изменение подачи насоса, изменение величины сил трения якоря по грунту и т.д.;        

3. при изменении параметров судовой сети, например, при уменьшении  величины напряжения или частоты тока во время включения электродвигателей большой мощности.

В переходном режиме электропривод переходит от одного установившегося режима к другому, при этом изменяются скорость, момент, и ток электродвигателя.

В установившемся режиме электромагнитный момент равен статическому моменту и противоположен ему по направлению,

и  привод работает с постоянной скоростью

 .                                                (3-1)

 В переходном режиме происходит ускорение  или замедление привода и возникает инерционный или динамический момент, который двигатель должен преодолеть.

Во время работы в переходном режиме, к электромагнитному моменту двигателя   и статическому моменту  добавляется динамический момент , равный

,                                          (3-2)

где:суммарный момент инерции всех элементов привода, приведенный к скорости вращения вала двигателя

        – угловая скорость;          – угловое ускорение.

 

Появление динамического момента объясняется действием сил инерции всех  частей электропривода и исполнительного механизма.

 Например, в электроприводе лебедки динамический момент появляется вследствие инерции якоря или ротора электродвигателя, шестерней редуктора, барабана лебёдки и т.д..

Динамический момент увеличивает время пуска и остановки электропривода, а так же время достижения установившейся скорости.

Для уменьшения динамического момента в двигателях специального исполнения  уменьшают диаметр ротора  и одновременно увеличивают длину ротора, с целью сохранения мощности двигателя. Такие двигатели применяют в электроприводах грузоподъемных механизмов. Их применение позволяет сократить время пуска и остановки электропривода, а значит, повысить производительность грузовых лебедок и кранов.

Серии таких электродвигателей называются крановыми (название произошло  от грузового крана). 

Уравнение движения электропривода

Уравнение движения электропривода учитывает все силы и моменты, действующие в переходных режимах и имеет следующий вид:

.                                                 (3-3)

      Уравнение  движения (3-3)  показывает, что электромагнитный момент двигателя   уравновешивается:                                                     

статическим  моментом на его валу и

инерционным динамическим моментом  .

      В расчётах принимается, что при работе электропривода массы тел и их моменты инерции  не изменяются.

      

Из анализа уравнения движения (3-3) следует, что:

       1)  при  , происходит ускорение электропривода;

  1. при , происходит замедление электропривода;
  2. при  , ускорение равно нулю,  привод работает в установившемся режиме с постоянной скоростью

.

            Момент, двигателя, положительный, если он направлен в сторону движения привода. Если момент двигателя направлен в противоположную сторону,  то он отрицательный.

         Знак минус перед статическим моментом указывает на  тормозящее действие механизма.

       При спуске груза,  раскручивании сжатой пружины, движении электротранспорта под уклон  и т.п. перед статическим моментом  ставится знак плюс, так как статический момент направлен в сторону движения  привода и способствует движению исполнительного механизма.

       Правая часть уравнения (3-3) динамический  (или инерционный) момент –   проявляется только при переходных режимах, то есть когда изменяется скорость привода.

        При ускорении привода динамический момент направлен против движения, а при торможении в сторону движения, так как он поддерживает движение за счёт инерции.

        Из уравнения движения электропривода (3-3) рассчитываются времена: пуска, разгона и торможения электропривода.

 

Время пуска двигателя в холостом режиме и под нагрузкой

          

          Цикл пуска электропривода включает пуск и торможение ЭД. Для некоторых судовых механизмов пуски и торможения повторяются очень часто и оказывают существенное влияние на их работу. При расчете электроприводов механизмов необходимо знать длительность переходных процессов.

Время переходных процессов определим из уравнения движения.

t =                         (3-4)     

Если динамический момент = const решение значительно упрощается. Найдем частное решение для наиболее типичных режимов работы электропривода.

Пуск двигателя в холостом режиме

 

          Многие асинхронные двигатели с короткозамкнутым ротором при разгоне до рабочих скоростей развивают электромагнитный момент, который незначительно изменяется за время разгона. Поэтому этот разгонный момент можно принять равным среднему значению.

,

где; = 1.2 2.

          Для рассматриваемого режима (пуск в холостую)

,

момент инерции, равен только моменту инерции двигателя, так как двигатель не нагружен механизмом. Из уравнения  (3-4) получим tхх время разгона двигателя без нагрузки до скорости при холостом ходе

tхх = ,                                          (3-5)        

где:  скорость в режиме холостого хода;  

         = 2.

Пуск двигателя под нагрузкой

            

          В отличие от пуска без нагрузки, при пуске нагруженного двигателя действует постоянный статический момент сопротивления, создаваемый механизмом  = , и поэтому ЭД разгоняется  пусковым моментом  за времядо установившейся скорости, соответствующей моменту нагрузки. Из уравнения  (3-4) получим время разгонадо установившейся скорости

Момент инерции, при пуске нагруженного двигателя, равен приведенному моменту инерции, так как двигатель  нагружен механизмом.

.                                           (3-6)

Время торможения и изменения скорости электропривода

Разгон двигателя от скорости  до

         Разгон двигателя от скорости  до  по действием динамического момента, =   развиваемого двигателем, происходит за время , которое получим из уравнения  (3-4),

= .                                             (3-7)

Свободный выбег

        Свободный выбег  это время, через которое останавливается электропривод после отключения от сети. Движение электропривода происходит только под действием статического момента, так электромагнитный момент двигателя= 0. Воспользуемся уравнением   (3-4) для определения времени свободного выбега:

                                      (3-8)

        Время торможения электропривода               

        Время свободного выбега за счет торможения статическим моментом бывает очень большим и часто не удовлетворяет требованиям электропривода и исполнительного механизма. Поэтому применяют различные способы электрического и механического торможения. Созданный тормозной момент ускоряет остановку привода.

       Статический момент может быть как тормозным и движущим. Это нужно учитывать при определении динамического момента.

Для данного случая статистический момент является тормозным. Время полной остановки определяется из уравнения (3-4).

 

.                                       (3-9)

Время изменения скорости электропривода

         Рассмотрим изменение скорости двигателя от  до  при линейном законе изменения динамического момента во времени.

         Если двигатель работает на линейном участке, а механическая характеристика и нагрузка на валу двигателя изменяется по линейному закону, то динамический момент будет линейной функцией скорости.

В этом случае конечная скорость   достигается через время

=

=

 Получим время, через которое изменяется скорость  двигателя от значения  до :

                               (3-10)

 

Путь рабочего органа за время пуска и торможения

          Для некоторых электрических приводов бывает необходимо определить угловой путь, который проходит точка рабочего органа за время пуска или торможения. При жесткой связи электродвигателя (ЭД) с рабочим органом этот путь будет пропорционален углу поворота вала ЭД. Путь за бесконечно малый промежуток времени определяется выражением:

Проинтегрировав получим:

                                           (3-11)

По этой формуле можно найти угол поворота вала ЭД при разгоне или торможении. И затем, зная передаточное отношение рассчитать угол поворота.


 

А также другие работы, которые могут Вас заинтересовать

40935. Самоконтроль на заняттях з легкої атлетики 31.5 KB
  Самопочуття після занять фізичними вправами повинне бути бадьорим настрій гарним людина не повинна почувати головного болю розбитості й відчуття стомлення. Як правило при систематичних занять спортом сон добрий зі швидким засипанням і бадьорим самопочуттям після сну. Вживати їжу відразу після занять не рекомендується краще почекати 3060 хвилин. Щоденник самоконтролю служить для обліку самостійних занять фізичною культурою й спорту а також реєстрації антропометричних змін показників функціональних проб і контрольних випробувань...
40936. €œІсторія створення Міжнародного олімпійського комітету 92.5 KB
  Роль П’єра де Кубертена у відродженні сучасних Олімпійських ігор. Роль П’єра де Кубертена у відродженні сучасних Олімпійських ігор. Відродженню сучасних Олімпійських ігор світ зобов’язаний в першу чергу енергії та наполегливості історика літератора педагога соціолога барона П’єра де Кубертена. П’єр Фреді барон де Кубертен народився у Парижі 1 січня 1863 року в багатій сім’ї французького живописця.
40937. Технология и безопасность взрывных работ 2.83 MB
  Рассмотрены основные теоретические и практические вопросы по курсу «Технология и безопасность взрывных работ». Учебное пособие предназначено для студентов четвертого курса заочной формы обучения специальностей направления «Горное дело»
40938. Когнітивний інструментарій комп’ютерної лінгвістики 133 KB
  Комп’ютерна лінгвістика. Когнітивний інструментарій комп’ютерної лінгвістики. Напрямки комп’ютерної лінгвістики. Комп’ютерна лінгвістика computtionl linguistics – є маргінальною галуззю мовознавства спрямованою на розробку автоматизованих методів зберігання обробки переробки й використання лінгвістичних знань й інформації репрезентованої знаками природної мови.
40939. Оптимізація когнітивної функції мови 72 KB
  Квантитативна лінгвістика – міждисциплінарний напрямок у прикладних дослідженнях в якому як основний інструмент вивчення мови та мовлення використовуються кількісні або статистичні методи аналізу. Комп’ютерне моделювання мови та мовлення – використання знання про частоту у комп’ютерній лінгвістиці. Ідентифікація людини за усним мовленням потребує залучення відповідних технічних засобів що відображають певні фонетичні ознаки та здійснюється на підставі характеристик голосу: гучності тривалості висоти тону висотного діапазону висотного...
40940. Типи словників. Структура словників 100 KB
  За кількістю представлених мов словники поділяються на одномовні двомовні й багатомовні перші представляють лексикон однієї мови інші є перекладними й подають еквіваленти мовних одиниць. За функцією словники поділяються на дескриптивні й нормативні: перші спрямовані на повний опис проблемної галузі в розмаїтті всіх випадків слововживань наприклад діалектні словники словники жаргонів сленгу; другі орієнтовані на норму мови з них вилучено все що не відповідає літературній нормі. Одномовні словники за типом характеристики слова...
40941. Оптимізація функціонування мови як засобу передачі інформації 109.5 KB
  Перекладознавство є філологічною галуззю яка вивчає закономірності процесу перекладу з однієї мови на іншу в його різноманітних виявах а також досліджує міжмовні відповідники різних рівнів і механізми та способи досягнення різних типів еквівалентності текстів оригіналу й перекладу. Об'єктом перекладознавства можна вважати первинний оригінальний текст і вторинний текст як результат перекладу. Предметом перекладознавства є процес перекладу як подвійний інтерпретаційнопороджувальний дискурс головним суб'єктом якого є особистість перекладача....
40942. Розвиток буржуазної держави та права у Великобританії 38 KB
  Розвиток буржуазної держави та права у Великобританії Буржуазна революція в Англії. Розвиток буржуазного права. вже новий король Вільгельм підписав Біль про права яким затверджувалось верховенство парламенту в законотворчості. визначався неписаними правилами колегіальна відповідальність кабінету міністрів формування уряду з партії що перемогла на виборах відмова короля від права вето та ін.
40943. Розвиток буржуазної держави та права у Франції 53.5 KB
  Розвиток буржуазної держави та права у Франції Буржуазна революція у Франції. Розвиток державності Франції у XIX ст. Буржуазна революція у Франції.