Infinitive (forms and functions)

Конспект урока

Иностранные языки, филология и лингвистика

The oceans cover 147 million square miles of the earth's total surface of 197 million square miles. Geographically, this vast expanse of water has been very thoroughly explored; the surface currents have been charted, the depths of the seas bordering the land have been carefully sounded. Yet, the nature of the ocean was practically unknown until recently, when new techniques and careful mapping did disclose new details of the ocean waters.



33.55 KB

3 чел.


Unit 8

Grammar : Infinitive (forms and functions)


I. Practice reading the following:

1) one-syllable words:

- vast, new, port, field, rock, past, way, depth, ship, sail, such, thus, heat, bring, use, soil

2) two-syllable words with the stress on the first syllable:

-cover, border, water, safely, study, modern, special, bottom, picture, travel, climate

3) two-syllable words with the stress on the second syllable:

- expanse, until, explore, research, engage, enable, conduct, device, expand

4) many-syllable words:

- practically, oceanography, complicated, navigation, scientist, instrument, reservoir, moreover, investigation, knowledge

5) word-combinations:

- chemical properties of water, various depths, research ships, scientific work, oceanographic observations, measuring instruments, the earth's magnetic field, living organisms, electric potential

II. Memorize the spelling and pronunciation of the following words:

Surface-  ['s:fIs]  - поверхня

Scientific - ["saIn'tIfIk]  - науковий

Research- [rI's:tS]  - дослідження

Movement - ['mu:vmnt] - рух

Reveal -  [rI'vi:l]  - виявляти

Device -  [dI'vaIs]  - пристрій

Invention - [In'venSn]  - винахід

Specimen - ['spesimin]  - зразок

Indicate-  ['IndIkeIt]  - показувати

Investigation- [In" vestI'geISn] - дослідження



The oceans cover 147 million square miles of the earth's total surface of 197 million square miles. Geographically, this vast expanse of water has been very thoroughly explored; the surface currents have been charted, the depths of the seas bordering the land have been carefully sounded. Yet, the nature of the ocean was practically unknown until recently, when new techniques and careful mapping did disclose new details of the ocean waters.

Oceanography, the science of the oceans, tries to bring to light all the changes that take place in the physical and chemical properties of water at various depths. Dozens of research ships of different nations designed for complicated ocean research are criss-crossing the oceans. They are fully equipped for a long navigation and for a wide range of scientific work, they can sail safely for many thousands of miles without putting into port. Scientists are engaged in day-to-day weather watches and oceanographic observations made aboard ship. Their task is to measure the winds, the temperature of the seas, water velocities in the deep layers of the ocean and to conduct other important studies.

Different measuring instruments, wave recorders and tide gauges are at work. A special instrument is used to record rapidly the temperature of the water at all depths. These temperature readings are most important in the study of the oceans, for the seas are reservoirs not only of water, but of heat that stabilizes the world's climates. Another modern instrument enables us to determine the motion of the ocean water by measuring the electric potentials induced in it because of its movements through the earth's magnetic field.

The invention of the supersonic echo sounder has revealed that the floor of the ocean is covered with great mountain chains and deep trenches. This device is based upon the principle of sending down sound impulses to be reflected and recorded on a special receiver. Echo sounding instruments now have developed to such a degree that it is possible to obtain a continuous accurate profile of the sea bottom under the surveying vessel's course. Moreover, a special meter is used to indicate depths by measuring the time required for a sound impulse to travel to the sea bottom and for the echo to return.

By means of special devices we are able to take specimens of soil and rocks from the deep ocean bottom which was inaccessible before and thus learn the origin of the ocean bed. To form one inch of soil on the bottom of the ocean takes thousand years, so it is easy to imagine what a remote geological past we can study in this way.

Special cameras may be used to photograph the ocean bed, the photographs showing any rocks and living organisms that happen to be in its field of vision. Such pictures can be taken at depths of more than 3 kilometers.

These investigations are not only a great aid to navigation but they also greatly expand our knowledge on the relationship existing between the atmospheric, oceanic and terrestrial phenomena.


1. wave recorder – хвилемір;

2. tide gauge – прилад для реєстрації припливів та відливів;

3. supersonic echo sounder – надзвуковий ехолот.

Answer the questions:

  1.  What area of the earth’s total surface do the oceans cover?
  2.  What does oceanography study?
  3.  How do scientists conduct oceanographic observations?
  4.  What measuring instruments help scientists in their work?
  5.  What can scientists learn using special devices?
  6.  Why are these investigations so important?


  1.  Translate the following word-combinations:

The origin of the ocean bed, supersonic echo sounder, sound impulses, complicated ocean research, oceanographic observations, to conduct important studies, thoroughly explored, the science of the oceans, scientific work, day-to-day weather watches, water velocities, measuring instruments, the world's climate, by means of special devices, field of vision, terrestrial phenomena, the surface currents, to bring to light all the changes, physical and chemical properties of the water, temperature readings.

  1.  Fill in the blanks with the words given below:

Instruments, research, to reveal, specimen, to determine, to photograph, observations, to indicate.

• Dozens of ... ships of different nations designed for complicated ocean research are criss-crossing the oceans.

• Different measuring ... , wave recorders and tide gauges are at work.

• Another modern instrument enables us ... the motion of the ocean by measuring the electric potential induced in it because of its movement through the earth's magnetic field.

• The invention of the supersonic echo sounder has ... that the floor of the ocean is covered with great mountain chain and deep trenches.

• Moreover, a special meter is used ... depths by measuring the time required for a sound impulse to travel to the sea bottom and for the echo to return.

• By means of special devices we are able to take ... of soil and rocks from the deep ocean bottom.

• Special cameras can be used ... the ocean bed.

• Scientists are engaged in day-to-day weather watches and oceanographic ... made aboard ship.

  1.  Translate the following international words without using a dictionary:

Technique, port, reservoir, temperature, instrument, echo, impulse, geological, kilometers, atmospheric, phenomena.

  1.  Finish the sentences:

• Dozens of research ships of different nations ... .

• Scientists are engaged in ... .

• A special instrument is ... .

• This device is based upon ... .

• Moreover, a special meter is used to ... .

• Their task is ... .

• To form one inch ... .

• Such pictures can ... .

  1.  Make up pairs of the following words and translate them into Ukrainian:

1) research     a) phenomena

2) oceanographic    b) instruments

3) measuring     c) properties

4) magnetic     d) organisms

5) living      e) ships

6) terrestrial     f) work

7) chemical     g) observations

8)scientific     h) field

  1.  Fill in the blanks with the appropriate prepositions:

1. Ships can sail thousands ... miles ... putting ... port.

2. Scientists have ... their disposal various instruments ... complicated research.

3. Sound impulses sent down ... the bottom of the ocean are reflected and accurately recorded ... a special receiver.

4. Specimens ... soil and water are taken ... the bottom ... the ocean ... various depths.

5. The formation ... one inch ... soil ... the ocean bed is a process ... thousand years.

  1.  Translate the following words and state their part of speech:

Practically, various, navigation, scientific, invention, magnetic, investigation, receiver.

  1.  Form verbs adding the prefix en- to the following words:

Large, rich, close, circle.

IX. Form adjectives adding the prefix in- to the following words:

Effective, soluble, definite, separable, sufficient, variable, efficient, accessible.

X. Translate into English:

1.Для дослідження морів і океанів використовуються спеціально обладнані кораблі.

2. Проведення цих спостережень вимагає довгого часу.

3. Одне з завдань полягає у визначенні рельєфу дна океану.

4. Для вимірювання температури води на різній глибині використовується особливий прилад.

5. Телевізійна камера, яка використовується для підводних робіт, заснована на принципах звичайного телебачення.

XI. Translate the sentences paying attention to different functions of "do":

1. The underwater television sets do help the scientists to see without any difficulty the bottom of the ocean.

2. The scientists do everything possible for the better knowledge of the ocean.

3. Their investigations do really expand our knowledge of different phenomena of nature.

4. Do you realize how long it takes to form every inch of the sea bottom?



Give a summary of the text.

In recent years underwater television has been introduced as an aid in the study of the ocean and underwater work. Apart from a few special features an underwater camera is based on the principles of ordinary T. V. cameras.

At present there are several types of underwater cameras to be operated chiefly at depths from 650 to 1,000 feet.

Connected to the viewing screen by a long flexible cable, the camera can be easily lowered by a crane and moved about. The cable connects the camera to its control equipment. A special intercommunication system is used for the diver to keep in touch with the control personnel.

The T. V. camera can be used for underwater exploration of marine life, television broadcasting as well as for inspection of canals, dams, turbine blades, and ships.

A tape recording may be made of the television picture for a permanent record. This makes possible underwater photography without film.



Translate the text using a dictionary.

Wave Motion. - One of the most important phenomena in nature is the transmission of energy from one point to another by wave motion. This kind of motion is illustrated in many ways. When a stone is dropped into a pool of still water, the surface of the water is covered with circular wavelets which widen out from the central point where the stone fell. The water does not really move outward from the central point, but it rises and then falls again. That such is the case is seen by observing a floating leaf or piece of wood. It does not move forward but returns again and again to its former position. Hence, the water on which the leaf rests must have this same kind of upward and downward motion rather than a forward motion.

When one end of a rope is fastened to a rigid wall the free end moves up and down rapidly, each jerk travels along the rope, each portion of the rope communicating the jerk to the next portion. Each particle of the rope imparts its upward or downward motion to its neighbors. The jerk moves forward, but the particles of the rope move only up and down. Motions of this kind are wave motions, in all these cases it is evident that there is a vibrating center which produces motions in those portions of the medium immediately in contact with it, and that these portions impart their motions to the neighboring portions.

Nature of Sound. - The source of sound is always in a state of vibration. As the vibration dies down, the intensity of the sound diminishes. If a ringing bell is touched with the fingers, the sound ceases because the vibrations are stopped by the fingers. When a weight falls to the floor, the weight as well as that part of the floor which is struck are set in vibration, and sound waves are produced. If a stretched guitar string is plucked, it gives a musical note owing to the vibrations set up in it. These vibrations take place too fast for the eye to follow them, and the string seems to be drawn out into a ribbon in the middle. In a vibrating tuning fork the prongs alternately approach and recede from each other. These movements of the prongs can be felt by touching the prongs with the fingers. They produce compressions and rarefactions in the surrounding air that travel forward as sound waves.

Velocity of Sound. - The velocity of sound depends on the density and the elasticity of the medium. The greater the elasticity and the less the density, the greater is the velocity. The relation between the velocity, the density, and the elasticity of the medium is expressed by the formula

Where v = the velocity of sound

e = the modulus of elasticity of the medium

p = the density of the medium

The Intensity of Sound. - When sound waves spread out in every direction from a source of sound, the intensity varies inversely as the square of the distance from the source. In this case, the sound waves spread out as spheres. The same amount of energy is transmitted across every spherical surface having its center at the source of sound. The larger the surface of these spheres, the smaller the energy that goes through each square centimeter of surface. The surfaces of these spheres increase as the squares of their radii. Hence, the energy that passes through unit area decreases as the squares of the radii increase.

                                 TEXT 8

                        SONIC TECHNIQUES FOR INDUSTRY

It is apparent that a new area of technology based on the use of sound waves, is taking shape Tho, term "somci»  'was given to this new technology which incuiaes Tthe analysis, testing, and proofing of materials and products by the^uie of mechanical vibrating energy. All applications of sonics are based on the Stint *physical principles, the particular freque'hdy Thai is best suilea foeimf determined by the special requirements and limitations of the task.

We shall see that the phenomenon of acoustic vibration can,be utilized in many ways With sound waves we can "sonograph"(as with light waves we photograph) the inner structure of bodies that are opaque to light. Sound waves can penetrate many solids and liquids more readily than X-rays or other forms of electromagnetic energy. Thus sound can expose a tiny crack embedded many feet deep in metal, where detection by any other means might be impossible. Similarly ultrasonic pulse techniques are now being used in medicine for the early diagnosis of different diseases.

By acoustic techniques we can measure the elastic constants of solid materials, as well as analyse the residual stresses or structural changes. The molecular arrangements within many organic liquids can be found from measurements of sound velocity or absorption. The rates of energy transfer among gas molecules and the chemical affinity of gaseous mixtures can be determined by using sound waves.

As soon as we can measure a process, we have within reach a means of controlling it Indeed acoustic instrumentation offers extensive but practically unexplored opportunities in the automatic control of industrial processes. The geometry of metal parts, the quality of cast metals and laminated plastics, the temperature in the combustion chamber of gasoline engines, the composition of compounds in liquid or gas, the flow velocity of liquids and gases - these and many other processes may, in time, come under the watchful ear of acoustics.

In the above-mentioned applications, the sound is used as a measuring stick or flashlight - the amounts of power are small and incidental. In another class of applications, large amounts of acoustic power are employed to do useful work. Vibrational energy for example is already used to drill rock and to machine complicated profiles in one single operation. Sound has become a powerful method for the cleaning of precision parts and may find important applications in electrochemistry. Acting on fumes, dusts and smokes, sound can speed up the collection of particles.

Here are some of the technical fields in which the sonic and ultrasonic engineering may find wide application: oil-well drilling, liquid processing, machining, engraving and welding, underwater signalling, cleaning of metal parts, information storage, molecular analysis and some others. The frequency range covered by these applications is extremely wide and their realization therefore involves widely different acoustic engineering practices.

Most of the applications listed have today reached the stage of successful operations, that is, the usefulness to industry of these techniques and instruments has been widely recognized, the development of reliable equipment is more or less completed, and the manufacture and maintenance of the equipment have proved to be economical.

We now come to the other application of sonics - namely, the processing of materials. It has been found that intense vibrations affect colloidal distribution, equalize electrolytic concentrations, and speed up aging processes by absorption in a certain medium, intense vibrations may produce local heating effects, as for example, in the use of ultrasonics in medical therapy.

A particularly powerful phenomenon is cavitation. This is the breakdown of cohesion of a liquid that is exposed to high tensile forces as the sound wave passes through it.

Under the influence of cavitations steel surfaces may be pitted, oxide layers removed, bacteria disintegrated, or high polymers depolymerized. One of the particular successful applications of surface cavitation is in ultrasonic drilling, another is in the soldering of aluminium.

Progress during recent years has been encouraging and still more valuable contributions of sonics to industry may well be expected.


А также другие работы, которые могут Вас заинтересовать

30906. Виды моторики пищеварительного тракта 49 KB
  Физиологические свойства и особенности гладкой мускулатуры пищеварительной трубки Гладкая мускулатура пищеварительной трубки состоит из гладкомышечных клеток ГМК. Межклеточные контакты ГМК пищеварительной трубки обеспечивает наличие нексусов. ГМК пищеварительной трубки обладают рядом физиологических свойств: возбудимостью проводимостью и сократимостью. Особенности возбудимости ГМК пищеварительной трубки: Возбудимость ГМК пищеварительной трубки ниже чем у миоцитов поперечнополосатой мускулатуры ППМ.
30907. Пищеварение в полости рта 27.5 KB
  Пищеварение в полости рта Секреция в ротовой полости В ротовой полости слюну вырабатывают 3 пары крупных и множество мелких слюнных желез. 1 Время нахождения пищи в ротовой полости в среднем 1618 секунд. Е нормальная микрофлора ротовой полости которая угнетает патологическую. В пределах ротовой полости ферменты слюны практически не оказывают влияния изза незначительного времени нахождения пищевого комка в ротовой полости.
30908. Пищеварении в желудке 38.5 KB
  Железы желудка состоят из трех видов клеток: Главные клетки – вырабатывают ферменты; Париетальные обкладочные НCl; Добавочные слизь. Клеточный состав желез изменяется в различных отделах желудка в антральном нет главных клеток в пилорическом нет обкладочных. Стимулирует секрецию желез желудка. Стимулирует моторику желудка.
30909. Пищеварение в 12-перстной кишке 27.5 KB
  За сутки 1525 л панкреатического сока рН 7588. Специфические вещества поджелудочного сока: 1. Ферменты панкреатического сока. Пищеварительные ферменты поджелудочного сока Протеазы поджелудочного сока эндо и экзопептидазы: а Эндопептидазы действуют на молекулу изнутри расщепляя внутренние пептидные связи.
30910. Роль печени в пищеварении 29 KB
  Состав желчи: 1. Специфические вещества: желчные кислоты и желчные пигменты: билирубин основной пигмент у человека придает коричневую окраску; биливердин в основном в желчи травоядных животных зеленый цвет. Роль желчи в пищеварении: 1.Желчные кислоты как компонент желчи играют в пищеварении ведущую роль: эмульгируют жиры активируют поджелудочную липазу обеспечивают всасывание нерастворимых в воде веществ образуя с ними комплексы жирные кислоты холестерин жирорастворимые витамины А D Е К и соли Са2...
30911. Состав и свойства кишечного сока 44.5 KB
  Состав и свойства кишечного сока Сок тонкой кишки Объем суточной секреции 25 л. Сахараза Лактаза Мальтаза Изомальтаза Гаммаамилаза фиксирована к стенке кишки. Фосфатазы Щелочная фосфатаза Кислая фосфатаза Сок толстой кишки рН сока 8590. К специфическим веществам сока толстой кишки относится слизь которая обеспечивает формирование каловых масс.
30912. Всасывание 28.5 KB
  Всасываются глюкоза алкоголь некоторые лекарственные вещества валидол нитроглицерин назначаются под язык . В желудке всасываются вода алкоголь некоторые соли и моносахариды в минимальных количествах вещества растворенные в спирте всасываются в больших количествах. Всасываются: продукты гидролиза жиров белков углеводов вода минеральные соли витамины. В норме всасываются только низкомолекулярные вещества лишенные видовой и индивидуальной специфичности.
30913. Принципы регуляции деятельности пищеварительной сис 33.5 KB
  Принципы регуляции деятельности пищеварительной системы Общие принципы регуляции пищеварения 1. Механизмы регуляции пищеварения: делятся на: нервные и гуморальные. Нервная регуляция пищеварения Нервная регуляция пищеварения осуществляется за счет безусловных и условных рефлексов. Рефлекторная регуляция пищеварения имеет ряд особенностей: 1.
30914. Пластическая и энергетическая роль углеводов, жиров и белков 28 KB
  Пластическая роль липидов состоит в том что они входят в состав клеточных мембран и в значительной мере определяют их свойства. Большая часть жиров в организме находится в жировой ткани меньшая часть входит в состав клеточных структур. Они входят в состав клеточных структур в частности клеточных мембран а также ядерного вещества и цитоплазмы. Это вещество входит в состав клеточных мембран; оно является источником образования желчных кислот а также гормонов коры надпочечников и половых желез.