44806

Потоки вещества и энергии в биологических сообществах. Продуценты, консументы, редуценты. Трофические цепи и трофические сети. Пирамиды численности и биомассы в сообществах

Доклад

Биология и генетика

Энергия основа работы экосистемы основной источник энергии Солнце. Поток солнечной энергии протекает через фототрофные экосистем при передаче в пищевых трофических цепях происходит рассеивание в виде тепла Пищевая цепь сеть последовательность организмов где каждый предыдущий пища для последующего. Из всей поступающей солнечной энергии растениями усваивается только 2 остальное расходуется на транспирацию отражается листьями идет на нагревание воздуха воды и почвы.

Русский

2013-11-13

37.5 KB

1 чел.

Потоки вещества и энергии в биологических сообществах. Продуценты, консументы, редуценты. Трофические цепи и трофические сети. Пирамиды численности и биомассы в сообществах.

  Энергия – основа работы экосистемы, основной источник энергии Солнце. Поток солнечной энергии протекает через фототрофные экосистем,  при передаче в пищевых (трофических) цепях происходит рассеивание в виде тепла

  Пищевая цепь(сеть) – последовательность организмов, где каждый предыдущий пища для последующего. Из всей поступающей солнечной энергии растениями усваивается только 2%, остальное расходуется на транспирацию, отражается листьями, идет на нагревание воздуха, воды и почвы. Эффективность предачи энергии зависит от:

  1.полноты выедания- доля съеденных организмов

  2.эффективности усвоения энергии (доля энергии, которая перешла на следующий трофический уровень на единицу съеденной биомассы). Она увеличивается с увеличением трофического уровня и изменяется в зависимости от типа экосистем)

Лесная –фитофаги поедают меньше 10% растений

Степь –до 30%

Вода – до 40%

Хищники поедают до 90% своих жертв

В воде почти 100% хищных рыб переходят в детрит.

Число Линдемана  -в среднем 10% предается с одного трофического уровн, а 90% рассеивается  (действует только на 1 уровне, на высших может достигать 60%)

С биологической точки зрения в сост. экосист. выделяют:

1.Продуцентов, автотрофных организмов (зел.раст, сине-зел. водоросли, фото- и хемосинтезирующие бактерии) производящие пищу из простых неорганич-го в-ва.

2.Консум-ов, или фаготрофов – гетеротрофных орг-ов, главным образом животных, пит-ся др. орг-ми или частицами орг. в-ва.

3.Редуцентов и детритофагов – гетеротрофные орг., в осн. бактерий и грибов, получающих энергию либо путем разлжения мертвых тканей.

  Консументы:

1.биофаги - пит-ся живым орг-м мат-лом

  - фитофаги – растительноядные (первичные консументы, к ним относятся повреждающие раст-я вирусы, грибы),

   - хищники - вторичные консументы, в т.ч. паразиты первичных консументов.

   - вершинные хищники – конечные потребители.  

2.сапрофаги – пит-ся мертвым орг. мат-лом.

 В экосистеме пищевые и энергетические связи между категориями всегда однозначны и идут в направлении: автотрофыгетеротрофы или в более полном виде: автотрофыконсум-тыредуценты.

  Орг-мы, участвующие в различных процессах круговорота, частично разделены в пространстве. Автотрофные процессы протекают наиболее активно в верхнем ярусе, где доступен солн-ный свет.

  Гетеротрофные процессы протекают в нижнем ярусе, где в почвах и осадках накапливаются органические в-ва.

  В целом 3 живых компонента экосистемы можно рассматривать как 3 функциональных царства природы, т.к. их разделение основано на типе питания и используемом источнике энергии.   

Поток энергии в сообществе - это ее переход от организмов одного уровня к другому в форме химических связей органических соединений (пищи).

Поток (круговорот) вещества - перемещение вещества в форме химических элементов и их соединений от продуцентов к редуцентам и далее (через химические реакции, происходящие без участия живых организмов) вновь к продуцентам.

Круговорот вещества и поток энергии - не тождественные понятия, хотя нередко для измерения перемещения вещества используются различные энергетические эквиваленты (калории, килокалории, джоули). Отчасти это объясняется тем, что на всех трофических уровнях, за исключением первого, энергия, необходимая для жизнедеятельности организмов, передается в форме вещества потребленной пищи. Лишь растения (продуценты) могут непосредственно использовать для своей жизнедеятельности лучистую энергию Солнца.

В отличие от веществ, которые непрерывно циркулируют по разным блокам экосистемы и всегда могут вновь входить в круговорот, энергия может быть использована в организме только один раз.

Согласно законам физики энергия может переходить из одной формы (например, энергии света) в другую (например, потенциальную энергию пищи), но она никогда не создается вновь и не исчезает. Не может быть ни одного процесса, связанного с превращением энергии, без потери некоторой ее части. В своих превращениях определенное количество энергии рассеивается в виде тепла и, следовательно, теряется. По этой причине не может быть превращений, например пищевых веществ в вещества, из которых состоит тело организма, идущих со стопроцентной эффективностью.

Существование всех экосистем зависит от постоянного притока энергии, которая необходима всем организмам для поддержания их жизнедеятельности и самовоспроизведения.

Лишь около половины солнечного потока, падающего на зеленые растения, поглощается фотосинтетическими элементами, и лишь малая доля поглощенной энергии (от 1/100 до 1/20 части) запасается в виде энергии, необходимой для деятельности тканей растений.

По мере удаления от первичного продуцента скорость потока энергии (то есть количество энергии, выраженное в энергетических единицах, перешедшее с одного трофического уровня на другой) резко ослабевает.

Падение количества энергии при переходе с одного трофического уровня на более высокий определяет число самих этих уровней. Подсчитано, что на любой трофический уровень поступает лишь около 10% (или чуть более) энергии предыдущего уровня. Поэтому общее число трофических уровней редко превышает 3-4.

Внутри экологической системы органические вещества создаются автотрофными организмами (например, растениями). Растения поедают животные, которых, в свою очередь, поедают другие животные. Такая последовательность называетсяпищевой цепью; каждое звено пищевой цепи называется трофическим уровнем (греч. trophos «питание»).

Пищевые сети служат основой для построения экологических пирамид. Простейшими из них являются пирамиды численности, которые отражают количество организмов (отдельных особей) на каждом трофическом уровне. Для удобства анализа эти количества отображаются прямоугольниками, длина которых пропорциональна количеству организмов, обитающих в изучаемой экосистеме, либо логарифму этого количества. Часто пирамиды численности строят в расчёте на единицу площади (в наземных экосистемах) или объёма (в водных экосистемах).

В пирамидах численности дерево и колосок учитываются одинаково, несмотря на их различную массу. Поэтому более удобно использовать пирамиды биомассы, которые рассчитываются не по количеству особей на каждом трофическом уровне, а по их суммарной массе. Построение пирамид биомассы – более сложный и длительный процесс.

Пирамиды биомассы не отражают энергетической значимости организмов и не учитывают скорость потребления биомассы. Это может приводить к аномалиям в виде перевёрнутых пирамид. Выходом из положения является построение наиболее сложных пирамид – пирамид энергии. Они показывают количество энергии, прошедшее через каждый трофический уровень экосистемы за определённый промежуток времени (например, за год – чтобы учесть сезонные колебания). В основание пирамиды энергии часто добавляют прямоугольник, показывающий приток солнечной энергии. Пирамиды энергии позволяют сравнивать энергетическую значимость популяций внутри экосистемы. Так, доля энергии, проходящей через почвенных бактерий, несмотря на их ничтожную биомассу, может составлять десятки процентов от общего потока энергии, проходящего через первичных консументов.


 

А также другие работы, которые могут Вас заинтересовать

77972. екстовые файлы. Диалоги для работы с файлами, настройка цвета и шрифта 53.5 KB
  Диалоги для работы с файлами настройка цвета и шрифта. Для облегчения работы с файлами в Delphi каждый отдельный файл представляет файловая переменная. Объявления файлов переменной Файловая переменная в общем виде объявляется в разделе vr примерно так...
77973. Типизированные файлы с идентичными структурами 30.5 KB
  Типизированный файл – это файл в котором записаны идентичные структуры. Например любой файл может считать файлом байтов – т.е можно читать байт за байтом, можно перейти сразу к любому байту по его номеру, можно сразу узнать сколько байт в файле, можно заменить любой байт на другой не перезаписывая файл.
77974. Условный оператор 28 KB
  Встречаются следующие формы условного оператора: Условный оператор с одной ветвью if условие then команды end При выполнении такого оператора вычисляется условие и если оно истинно то выполняются команды до ключевого слова end в противном случае выполнение программы продолжается со следующей за условным оператором команды. Условный оператор с двумя ветвями if условие then команды else команды end Здесь при истинности условия выполняются команды при ложности команды.
77976. Компоненты ввода-вывода информации 125 KB
  Свойство IsMasked: Boolean доступно только для чтения и содержит True, если строка шаблона задана. Свойство EditText: string содержит текст до наложения на него маски шаблона (т. е. то, что ввел пользователь), а свойство Text: String может (в зависимости от шаблона см. ниже) содержать либо исходный текст, либо результат наложения на него маски шаблона.
77977. Палитра компонентов 271 KB
  Для этого используется специальный редактор окно которого появляется на экране после щелчка правой кнопкой мыши на любой пиктограмме в палитре компонентов и выбора опции properties Свойства. Окно редактора палитры компонентов Данное окно позволяет добавлять или удалять компоненты с палитры компонентов или переименовывать названия вкладок: кнопка dd позволяет добавить новую вкладку палитры компонентов; кнопка Delete предназначена для удаления вкладки палитры компонентов. На нем изображены шесть наиболее важных окон Delphi: главное...
77978. Возможности Delphi для ввода и отображения дат и времен. Таймер 193.5 KB
  Таймер Компонент Delphi Timer очень простой компонент который не виден на экране но тем не менее Delphi Timer выполняет очень важные функции в программе. Delphi Timer позволяет вводить необходимые задержки между выполнением тех или иных действий. Компонент Timer имеет всего четыре свойства и одно событие и работать с компонентом Delphi Timer очень просто. Свойство Назначение Enbled Включение-выключение таймера Intervl Интервал срабатывания в миллисекундах Nme Имя компонента в программе Tg Произвольный числовой параметр Помещаем...
77979. Графические файлы в Delphi 63 KB
  У ряда объектов из библиотеки библиотеки визуальных компонент есть свойство Cnvs канва которое предоставляет простой путь для рисования на них. Cnvs является в свою очередь объектом объединяющим в себе поле для рисования карандаш Pen кисть Brush и шрифт Font. Cnvs обладает также рядом графических методов: Drw TextOut rc Rectngle и др. Используя Cnvs вы можете воспроизводить на форме любые графические объекты картинки многоугольники текст и т.
77980. Итерационные циклы 47 KB
  Для организации итерационных циклов используются операторы цикла с предусловием цикл ПОКА и цикла с постусловием цикл ДО. Эти операторы не задают закон изменения параметра цикла поэтому необходимо перед циклом задавать начальное значение параметра с помощью оператора присваивания а внутри цикла изменять текущее значение этого параметра. Циклы с предусловием используются тогда когда выполнение цикла связано с некоторым логическим условием. Оператор цикла с предусловием имеет две части: условие выполнения цикла и тело цикла.