44828

Федеральный закон Об охране атмосферного воздуха

Доклад

Государство и право, юриспруденция и процессуальное право

Мониторинг атмосферы; внедрение малоотходных технологий и производств; разработка и внедрение более совершенных установок по улавливанию утилизации и обезвреживанию вредных отходов и веществ; разработка норм и правил по ограничению воздействия нестационарных источников загрязнения негативно влияющих на воздушную среду. В проектах должен быть обоснован выбор района размещения объекта с учетом ландшафтно-метеорологических условий должны содержаться данные о допустимых уровнях загрязнения атмосферы согласно нормативным. Общая...

Русский

2013-11-14

40 KB

4 чел.

Федеральный закон Об охране атмосферного воздуха Принят Государственной Думой 2 апреля 1999 год.

атмосферный воздух - жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений.
вредное (загрязняющее) вещество - химическое или биологическое вещество либо смесь таких веществ, которые содержатся в атмосферном воздухе и которые в определенных концентрациях оказывают вредное воздействие на здоровье человека и окружающую среду

 загрязнение атмосферного воздуха - поступление в атмосферный воздух или образование в нем вредных (загрязняющих) веществ в концентрациях, превышающих установленные государством гигиенические и экологические нормативы качества атмосферного воздуха;

Главное требование к охране атмосферного воздуха — строгое соблюдение установленных норм и правил, регламентирующих загрязнение атмосферы; регулярное слежение и контроль за экологическим состоянием и антропогенным изменением атмосферного воздуха в целях последующей оценки, прогноза и управления этим состоянием (т.е. мониторинг атмосферы); внедрение малоотходных технологий и производств; разработка и внедрение более совершенных установок по улавливанию, утилизации и обезвреживанию вредных отходов и веществ; разработка норм и правил по ограничению воздействия нестационарных источников загрязнения, негативно влияющих на воздушную среду. Важны: принцип охраны и рационального использования климатических ресурсов — правильный выбор места сооружения промышленных и сельскохозяйственных предприятий. В проектах должен быть обоснован выбор района размещения объекта с учетом ландшафтно-метеорологических условий, должны содержаться данные о допустимых уровнях загрязнения атмосферы согласно нормативным.

Общая характеристика загрязнения атмосферы.

Атмосфера всегда содержит определённое количество примесей. поступающих от естественных и антропогенных источников. К числу примесей. выделяемых естественными источниками. относят: пыль (растительного. вулканического. космического происхождения. возникающая при эрозии почвы. частицы морской соли ); туман. дымы и газы от лесных и степных пожаров ; газы вулканического происхождения ; продукты растительного. животного и микробиологического происхождения и др.

Естественные источники загрязнения бывают либо распределёнными, например выпадение космической пыли. либо кратковременными стихийными. например лесные и степные пожары. извержения вулканов и т. п. Уровень загрязнения атмосферы естественными источниками является фоновым и мало изменяется с течением времени.

Более устойчивые зоны с повышенными концентрациями загрязнений возникают в местах активной жизнедеятельности человека. Поступающие в атмосферу оксиды углерода. серы. азота. углеводорода. соединения свинца. пыль и т. д. оказывают различное токсическое воздействие на организм человека.

  

Основные загрязняющие вещества.

   В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы.

Основными вредными примесями пирогенного происхождения являются следующие:

  Оксид углерода. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

  Сернистый ангидрид. Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд.

  Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

  Сероводород и сероуглерод. Источники выброса:  предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы.

  Оксилы азота. Источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид.

  Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторосодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

  Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. 

Аэрозольное загрязнение атмосферы.

 Аэрозоли - это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки.

  Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже - оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест.

Фотохимический туман (смог) представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождении. Возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

 

Наибольшие загрязнения атмосферного воздуха поступают от энергетических установок, работающих на углеводородном топливе (бензин, керосин. дизельное топливо, мазут. уголь. природный газ и др. ). Количество загрязнений определяется составом. объёмом сжигаемого топлива и организацией процесса сгорания.

.

Основные компоненты вбрасываемые в атмосферу при сжигании различных видов топливо в энергоустановках. - не токсичные диоксид углеродаСО2 и водяной пар Н2О. Однако кроме них в атмосферу выбрасываются и вредные вещества. такие. как оксид углерода. оксиды серы. азота. соединения свинца. сажа. углеводороды. в том числе канцерогенный бензопирен С20Н12 и. несгоревшие частицы твердого топлива и т. п.

При сжигании твердого топлива в котлах ТЭС образуется большое количество золы. диоксида серы. оксида азота. Так. например. подмосковные угли имеют в своём составе 2, 5 6, 0 % серы и до 30 –50 % золы. Дымовые газы образующиеся при сжигании мазута. содержат оксиды азота. соединения ванадия и натрия. газообразные и твердые продукты не полного сгорания. Перевод установок на жидкое топливо существенно уменьшает золообразование. но практически не влияет на выбросы SO2 так как мазуты. применяемые в качестве топлива. содержат 2 и более % серы.

При сжигании природного (неочищенного ) газа в домовых выбросах также содержаться оксид серы и оксиды азота. Следует отметить. что наибольшее количество азота образуется при сжигании жидкого топлива.


 

А также другие работы, которые могут Вас заинтересовать

81520. Роль транспортных РНК в биосинтезе белков. Биосинтез аминоацил-т-РНК. Субстратная специфичность аминоацил-т-РНК-синтетаз 125.71 KB
  У человека около 50 различных тРНК обеспечивают включение аминокислот в белок. тРНК называют адапторные молекулы так как к акцепторному концу этих молекул может быть присоединена определённая аминокислота а с помощью антикодона они узнают специфический кодон на мРНК. В процессе синтеза белка на рибосоме связывание антикодонов тРНК с кодонами мРНК происходит по принципу комплементарности и антипараллельности.
81521. Последовательность событий на рибосоме при сборке полипептидной цепи. Функционирование полирибосом. Посттрансляционный процессинг белков 111.26 KB
  Каждая эукариотическая мРНК кодирует строение только одной полипептидной цепи т. она моноцистронна в отличие от прокариотических мРНК которые часто содержат информацию о нескольких пептидах т. Кроме того на полицистронных мРНК синтез белка начинается до того как заканчивается их собственный синтез так как процессы транскрипции и трансляции не разделены.
81522. Адаптивная регуляция генов у про- и эукариотов. Теория оперона. Функционирование оперонов 127.06 KB
  Регуляция активности генов у прокариотов. В экспериментах гипотеза оперона получила полное подтверждение а предложенный в ней тип регуляции стали называть контролем синтеза белка на уровне транскрипции так как в этом случае изменение скорости синтеза белков осуществляется за счёт изменения скорости транскрипции генов т. Согласно теории Жакоба и Моно оперонами называют участки молекулы ДНК которые содержат информацию о группе функционально взаимосвязанных структурных белков и регуляторную зону контролирующую транскрипцию этих генов.
81523. Понятие о клеточной дифференцировке. Изменение белкового состава клеток при дифференцировке (на примере белкового состава полипептидных цепей гемоглобина) 105.05 KB
  Дифференцировка клеток определенного типа сводится к экспрессии в них комплекса генов специфичных для данной клеточной линии. Экспрессия этих генов в свою очередь контролируется регуляторными районами гена промоторами и энхансерами. Энхансеры регуляторные районы ДНК расположенные на некотором расстоянии от контролируемых ими генов но в том же локусе хромосомы. Для того чтобы промоторы и энхансеры тканеспецифических генов могли взаимодействовать с ТФ они должны быть открытыми т.
81524. Молекяулрные механизмы генетической изменчивости. Молекулярные мутации: типы, частота, значение 110.08 KB
  Молекулярные мутации: типы частота значение Классификация мутаций Тип мутаций Характер мутационных изменений Примеры последствий Геномный Изменение числа хромосом Болезнь Дауна появление дополнительной хромосомы 21 Хромосомные Общее число хромосом не меняется. Частота мутаций в половых клетках высока. Основные виды генных мутаций Виды мутаций Изменения в структуре ДНК Изменения в структуре белка ЗАМЕНА Без изменения смысла кодона Замена одного нуклеотида в кодоне Белок не изменён С изменением смысла кодона миссенсмутация ...
81525. Генетическая гетерогенность. Полиморфизм белков в популяции человека (варианты гемоглобина, гликозилтрансферазы, группоспецифических веществ и др) 107.01 KB
  Группы крови. Другой важный пример полиморфизма белков связанный с проблемой переливания крови существование в популяции людей 3 аллельных вариантов гена фермента гликозилтрансферазы А В и 0. Антитела к антигенам А и В обычно имеются в сыворотке крови людей на поверхности эритроцитов которых отсутствует соответшвующий антиген т. индивидуумы с антигенами А на поверхности эритроцитов продуцируют в сыворотку крови антитела к Вантигенам антиВ а люди с Вантигенами антитела к антигенам А антиА.
81526. Биохимические основы возникновения и проявления наследственных болезней (разнообразие, распространение) 104.52 KB
  За этой группой следуют белки модулирующие функции белков и участвующие в правильном сворачивании полипептидных цепей. Хорошо изученными наследственными заболеваниями связанными с нарушением синтеза α или βцепей НЬ являются талассемии. Синтез α и βцепей в норме регулируется таким образом что все молекулы протомеров используются на синтез тетрамера α2β2 Талассемии возникают как результат мутаций включающих замены или делеции одного или нескольких нуклеотидов а иногда и целого гена кодирующего структуру одного из протомеров....
81527. Основные системы межклеточной коммуникации: эндокринная, паракринная, аутокринная регуляция 100.4 KB
  По расстоянию от клетки продуцента гормона до клеткимишени различают эндокринный паракринный и аутокринный варианты регуляции. Клеткимишени могут отстоять от эндокринной клетки сколь угодно далеко. Пример: секреторные клетки эндокринных желёз гормоны из которых поступают в систему общего кровотока. Примеры: эндотелины вырабатываемые клетками эндотелия и воздействующие на эти же эндотелиальные клетки; Тлимфоциты секретирующие интерлейкины имеющие мишенями разные клетки в том числе и Тлимфоциты.
81528. Роль гормонов в системе регуляции метаболизма. Клетки-мишени и клеточные рецепторы гормонов 106.94 KB
  Клеткимишени и клеточные рецепторы гормонов Роль гормонов в регуляции обмена веществ и функций. Физиологический эффект гормона определяется разными факторами например концентрацией гормона которая определяется скоростью инактивации в результате распада гормонов протекающего в основном в печени и скоростью выведения гормонов и его метаболитов из организма его сродством к белкампереносчикам стероидные и тиреоидные гормоны транспортируются по кровеносному руслу В комплексе с белками количеством и типом рецепторов на поверхности...