44989

Устойчивость систем управления. Первый метод Ляпунова

Доклад

Математика и математический анализ

Устойчивость систем управления. Устойчивость свойство системы возвращаться в исходный или близкий к нему установившийся режим после всякого выхода из него в результате какоголибо воздействия. когда установившийся режим вообще отсутствует дается общее определение устойчивости: Система устойчива если её выходная величина остаётся ограниченной в условиях действия на систему ограниченных по величине возмущений. Если в характеристическом уравнении системы имеется хотя бы один нулевой корень или хотя бы одна пара чисто мнимых корней λii1 =...

Русский

2013-11-15

87.5 KB

21 чел.

7. Устойчивость систем управления. Первый метод Ляпунова.

Устойчивость – свойство системы возвращаться в исходный или близкий к нему установившийся режим после всякого выхода из него в результате какого-либо воздействия. Это свойство затухания переходного процесса с течением времени.

Для тех объектов, которые работают в условиях непрерывно меняющихся воздействий, т.е. когда установившийся режим вообще отсутствует, дается общее определение устойчивости:

Система устойчива, если её выходная величина остаётся ограниченной в условиях действия на систему ограниченных по величине возмущений.

Yсв →0  при t→∞ , если все корни характеристического уравнения λ обладают отрицательной вещественной частью.

Если хотя бы один вещественный корень λi будет положительным или хотя бы одна пара комплексно-сопряженных корней будет иметь положительную вещественную часть, то в этом случае процесс будет расходящийся.

Если в характеристическом уравнении системы имеется хотя бы один нулевой корень или хотя бы одна пара чисто мнимых корней λi,i+1 = + , то система будет находиться на границе устойчивости.

Метод Ляпунова. Он дал первое определение устойчивости:

В качестве возмущения Ляпунов рассматривал любое отклонение от установившегося режима, т.е. он рассматривал устойчивость как св-во свободного движения.

Пусть y*(t) – обозначает некоторый установив-ся режим, а действительное текущее знач. yy(t).  y(t) – соответствует возмущенному движению.

Отклонение возм-го движ-ия от невозм-го обозн-м через xi(t)

xi(t)= yi(t)- yi*(t)

(*)- диж ур-ие в форме Коши в отклонениях.

Невоз-ое движение х*=0, xi можно принять за координаты состояния системы.

Если мы смогли бы найти все решения этого ур-ия, то мы могли бы найти все возм-ие возействия.

В общем случае конкретное выражение зависит от y*, т.е. при рассмотрении устойчивости необходимо указать об уст-ти какого режима идет речь.

Геометрическая трактование уст-ти Ляпунова.

Невозмущенное движение х*=0 называется устойчивым если задав трубку сколь угодно малого n-мерного сечения Е можно подобрать в нач-ный мом. вр. t0 такую обл-ть нач-х условий d завис-ая от Е, что в дальнейшем увеличение t возмущ-ое движ-ие x(t) не выйдет из заданной трубки Е.

Аналитический критерий уст-ти Ляпунова.

Невоз-ое дв-ие х*=0 наз-ся уст-вым, если при заданном Е>0 сколь угодно мало оно не было сущ-ет такое d>0 зав-ее от Е, что при нач-х услов-ях если xi(t0)< d, то при дальнейшем движении  |xi(t)|< Е.

Если данное условие не выполняется хотя бы для одного xi, то сис-ма неустойчива. Если при выполнении данных условий xi ->0 при t->¥ то невозм-ое движение – асимптотически устойчивое. Если x(t)->0 при любых нач-х отклонениях, то сис-ма наз-ся уст-ой в целом.

Ляпунов рассматривал в общем случае не линейную сис-му, а ее линеаризованный вариант. Он предположил теорему уст-ти, кот-ая позволяет судить об уст-ти нелин-ой сис-мы по ее линеаризованному варианту. Если ур-ие (*) разложить в ряд Тейлора:

-Линейное ур-ие 1-го приближения для него можно составить хар-ое ур-ие.

Для нелинейных сис-м к которым применимо разложение (**) сущ-ет 3 теоремы Ляпунова об исследовании уст-ти по 1-му приближению.

Т.1. Невозм-ое движ-ие х*=0 устойчиво не зависимо от вида малых нелинейностей jI, если все корни хар-го ур-ия D(l)  имеют ориц-ые вещественные корни.

Т.2. Невозм-ое движ-ие х*=0 не устойчиво не зависимо от вида малых нелинейностей jI, если хотя бы один корень  хар-го ур-ия D(l) имеет полож-ую вещест-ую часть.

Т.3. В случае наличия в каких-либо корнях хар-го ур-ия нулевой вещ-ой части при всех остальных отрицательных ничего нельзя сказать об уст-ти невозм-го движения х*=0 по 1-му приближению, т.е. без спец-ого исследования ур-ия (**).

По Т.3. сис-ма нах-ся на границе устойчивости.


 

А также другие работы, которые могут Вас заинтересовать

28471. Метод найменшої вартості побудови початкового опорного плану 17.79 KB
  Для даної задачі такою є клітинка А2В2 в яку записується найменше з чисел 220 230. У звуженому полі клітинок вибирається найменша вартість в клітинці А2В1 в яку записується min 10 150 =10. В цю клітинку записується min 280300=280 проставляється прочерк в А3В3 і біля запасів А1 записується залишок в 20 од. Далі заповнюється клітинка А1B4 з найменшою вартістю числом min 20 200=20 виставляються прочерки в клітинках А1В1 А1В2 і записується залишок потреб В4 в розмірі 180 од.
28472. Метод потенціалів побудови оптимального плану 20.81 KB
  Метод потенціалів побудови оптимального плану Побудова системи потенціалів. Сформулюємо критерій оптимальності Канторовича опорного плану ТЗ:Опорний планоптимальний тоді і тільки тоді коли для цього плану існує система чиселпотенціалів u1u2.Іншими словами для оптимальності опорного плану необхідно і достатнє існування такої системи потенціалів що для заповнених клітинок виконується система рівнянь а для вільних клітинок виконується система нерівностей де К1 К2 множини пар індексів і та j які визначають...
28473. Матриці та дії над ними 25.77 KB
  Матрицею або m × nматрицею називається прямокутна таблиця m × n чисел розташованих вт рядках і n стовпцях: де а.Матриця називається прямокутною якщо m ≠ n і квадратною якщо m = n. В останньому випадку число n називається її порядком.Нульовою нульматрицею називається матриця О псі елемент якої нулі.
28474. Визначники та їх властивості 23.28 KB
  Введемо в розгляд нове поняття визначник квадратної матриці порядка n .Для цього попередньо покажемо як шукаються визначники І 3 порядків тобто визначники квадратних матриць 1 3 порядків.Визначник першого порядку це сам елемент аll :Визначником другого порядку називається число В 1 добуток елементів основної діагоналі береться із знаком а побічної діагоналі із знаком .Обчислення визначників порядку n ≥ 4 можна звести як покажемо нижче до знаходження визначників...
28475. Обернена матриця 17.08 KB
  Оберненою до даної квадратної матриці А називається така матриця А1 що А1А =АА11=Е. Для кожної невиродженої квадратної матриці існує єдина обернена. Можна довести що А1 = А 1 де А приєднана до А матриця тобто матриця того ж порядку елементами якої є алгебраїчні доповнення відповідних елементів матриці А' транспонованої до А. Визначник дає інформацію про виродженість чи невиродженість тільки квадратної матриці.
28477. Предмет математичного програмування 11.64 KB
  Для будьякої технікоекономічної задачі кожного рівня наприклад керування роботою підприємства характерними є багатоваріантність вибору тих чи інших рішень а також наявність того чи іншого критерію доцільності прийняття чи відкидання рішень наприклад мінімізація собівартості максимізація прибутку то що. При розв'язуванні будьякої задачі економічного змісту із застосуванням методів математичного програмування необхідно: 1 побудувати математичну модель задачі і проаналізувати її адекватність економічній задачі; 2 з допомогою...
28478. Найпростішіоматематичніомоделі математичного програмування 17.03 KB
  Побудова математичної моделі: Позначимо: хі - кількість одиниць продукції виду Пі, заплановано: до випуску (і=1,2); z - сумарний прибуток при реалізації запланованої виробничої програми. Для змінних x1, x2, очевидно, виконуються нерівност