44995

Методы математического моделирования в статистике

Реферат

Экономическая теория и математическое моделирование

Математической статистикой называют раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для научных и практических выводов. Статистические данные здесь понимаются как сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками.

Русский

2014-12-02

193.5 KB

8 чел.

Реферат

По предмету: «Организация исследований и разработок»

На тему: «Методы математического моделирования в статистике»


1. Элементы математической статистики

 Математической статистикой называют раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для научных и практических выводов. Статистические данные здесь понимаются как сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками. 

 Главная цель математической статистики - получение осмысленных, научно обоснованных выводов из подверженных случайному разбросу данных. При этом само изучаемое явление, генерирующее эти данные, чаще всего слишком сложно, чтобы можно было составить его полное описание, отражающее все детали. Поэтому статистические выводы делаются на основе некоторой математической вероятностной модели реального случайного явления, которая должна воспроизводить его существенные черты и исключать те, которые предполагаются несущественными. Методы математической статистики позволяют по наблюдениям над изучаемым явлением определить вероятностные характеристики случайных величин, участвующих в математической модели, описывающей это явление.

Задача математической статистики - установление закономерностей, которым подчинены массовые случайные явления, основано на изучении методами теории вероятностей статистических данных- результатов наблюдений. Статистические данные представляют собой данные, полученные в результате обследования большого числа объектов или явлений; следовательно, математическая статистика имеет дело с массовыми явлениями.

 Первая задача математической статистики - указать способы сбора и группировки статистических сведений, полученных в результате наблюдений или в результате специально поставленных экспериментов.

 Вторая задача математической статистики - разработать методы анализа статистических данных в зависимости от целей исследования.

Современная математическая статистика разрабатывает способы определения числа необходимых испытаний до начала исследования, в ходе исследования и решает многие другие задачи. Современную математическую статистику определяют как науку о принятии решений в условиях неопределенности

Здача математической статистики состоит в создании методов сбора и обработки статистических данных для получения научных и практических выводов.

1.1 Генеральная и выборочная совокупность статистических данных

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты.

 Качественными признаками объект обладает либо не обладает. Они не поддаются непосредственному измерению (например, спортивная специализация, квалификация, национальность, территориальная принадлежность и т. п.).

 Количественные признаки представляют собой результаты подсчета или измерения. В соответствии с этим они делятся на дискретные и непрерывные.

Иногда проводиться сплошное обследование, т.е. обследуют каждый из объектов совокупности относительно признака, которым интересуются. На практике сплошное обследование применяют сравнительно редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов и подвергают их изучению. Различают генеральную и выборочную совокупности.

 Выборочной совокупностью (выборкой) называют совокупность случайно отобранных объектов.

 Генеральной (основной) совокупностью называют совокупность, объектов из которых производится выборка.

 Объемом совокупности (выборочной или генеральной) называют число объектов этой совокупности. Например, если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n =100. Число объектов генеральной совокупности N значительно превосходит объем выборки n .

1.2 Способы выборки

При составлении выборки можно поступать двумя способами: после того как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. В соответствии со сказанным выборки подразделяют на повторные и бесповторные.

 Повторной называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

 Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.

Для того чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли (выборка должна правильно представлять пропорции генеральной совокупности) - выборка должна быть репрезентативной (представительной).

Выборка будет репрезентативной, если:

  •  каждый объект выборки отобран случайно из генеральной совокупности;
  •  все объекты имеют одинаковую вероятность попасть в выборку.

1.3 Способы группировки статистических данных

1.3.1 Дискретный вариационный ряд 

Обычно полученные наблюдаемые данные представляют собой множество расположенных в беспорядке чисел. Просматривая это множество чисел, трудно выявить какую-либо закономерность их варьирования (изменения). Для изучения закономерностей варьирования значений случайной величины опытные данные подвергают обработке.

 Пример 1. Проводились наблюдения над числом Х оценок полученных студентами ВУЗа на экзаменах. Наблюдения в течение часа дали следующие результаты: 3; 4; 3; 5; 4; 2; 2; 4; 4; 3; 5; 2; 4; 5; 4; 3; 4; 3; 3; 4; 4; 2; 2; 5; 5; 4; 5; 2; 3; 4; 4; 3; 4; 5; 2; 5; 5; 4; 3; 3; 4; 2; 4; 4; 5; 4; 3; 5; 3; 5; 4; 4; 5; 4; 4; 5; 4; 5; 5; 5. Здесь число Х является дискретной случайной величиной, а полученные о ней сведения представляют собой статистические (наблюдаемые) данные.

Расположив приведенные выше данные в порядке неубывания и сгруппировав их так, что в каждой отдельной группе значения случайной величины будут одинаковы, получают ранжированный ряд данных наблюдения.

В примере 1 имеем четыре группы со следующими значениями случайной величины: 2; 3; 4; 5. Значение случайной величины, соответствующее отдельной группе сгруппированного ряда наблюдаемых данных, называют вариантом, а изменение этого значения варьированием.

Варианты обозначают малыми буквами латинского алфавита с соответствующими порядковому номеру группы индексами - xi. Число, которое показывает, сколько раз встречается соответствующий вариант в ряде наблюдений называют частотой варианта и обозначают соответственно - ni.

Сумма всех частот ряда  - объем выборки. Отношение частоты варианта к объему выборки ni / n = wi называют относительной частотой.

 Статистическим распределением выборки называют перечень вариантов и соответствующих им частот или относительных частот (табл. 1, табл. 2).

 Пример 2. Задано распределение частот выборки объема n = 20:

Таблица 1

xi

2

6

12

ni

3

10

7

Написать распределение относительных частот.

Решение. Найдем относительные частоты, для чего разделим частоты на объем выборки:

W1 = 3/20 = 0,15; W2 = 10/20 = 0,50; W3 = 7/20 = 0,35.

Напишем распределение относительных частот:

Таблица 2

xi

2

6

12

wi

0,15

0,50

0,35

Контроль: 0,15 + 0,50 + 0, 35 = 1.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты, соответствующей интервалу, принимают сумму частот, попавших в этот интервал).

 Дискретным вариационным рядом распределения называют ранжированную совокупность вариантов xi с соответствующими им частотами ni или относительными частотами wi.

Для рассмотренного выше примера 1 дискретный вариационный ряд имеет вид:

Таблица 3

xi

2

3

4

5

ni

8

12

23

17

wi

8/60

12/60

23/60

17/60

Контроль: сумма всех частот вариационного ряда (сумма значений второй строки таблицы 3) есть объем выборки (в примере 1 n = 60 ); сумма относительных частот вариационного ряда должна быть равна 1 (сумма значений третьей строки таблицы 3)

 1.3.2 Интервальный вариационный ряд  

Если изучаемая случайная величина является непрерывной, то ранжирование и группировка наблюдаемых значений зачастую не позволяют выделить характерные черты варьирования ее значений. Это объясняется тем, что отдельные значения случайной величины могут как угодно мало отличаться друг от друга и поэтому в совокупности наблюдаемых данных одинаковые значения величины могут встречаться редко, а частоты вариантов мало отличаются друг от друга.

Нецелесообразно также построение дискретного ряда для дискретной случайной величины, число возможных значений которой велико. В подобных случаях следует строить интервальный вариационный ряд распределения.

Для построения такого ряда весь интервал варьирования наблюдаемых значений случайной величины разбивают на ряд частичных интервалов и подсчитывают частоту попадания значений величины в каждый частичный интервал.

 Интервальным вариационным рядом называют упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами или относительными частотами попаданий в каждый из них значений величины.

Для построения интервального ряда необходимо:

  1.  определить величину частичных интервалов;
  2.  определить ширину интервалов;
  3.  установить для каждого интервала его верхнюю и нижнюю границы;
  4.  сгруппировать результаты наблюдении.

1. Вопрос о выборе числа и ширины интервалов группировки приходится решать в каждом конкретном случае исходя из целей исследования, объема выборки и степени варьирования признака в выборке.

Приблизительно число интервалов k можно оценить исходя только из объема выборки n одним из следующих способов:

  • по формуле Стержеса: k = 1 + 3,32·lg n;
  • с помощью таблицы 1.


Таблица 1

Объем выборки, n

25-40

40-60

60-100

100-200

Больше 200

Число интервалов, k

5-6

6-8

7-10

8-12

10-15

2. Обычно предпочтительны интервалы одинаковой ширины. Для определения ширины интервалов h вычисляют:

  • размах варьирования R - значений выборки: R = xmax - xmin,

где xmax и xmin - максимальная и минимальная варианты выборки;

  • ширину каждого из интервалов h определяют по следующей формуле: h = R/k.

 3. Нижняя граница первого интервала xh1 выбирается так, чтобы минимальная варианта выборки xmin попадала примерно в середину этого интервала: xh1 = xmin - 0,5·h .

 Промежуточные интервалы получают прибавляя к концу предыдущего интервала длину частичного интервала h:

xhi = xhi-1 +h .

Построение шкалы интервалов на основе вычисления границ интервалов продолжается до тех пор, пока величина xhi удовлетворяет соотношению:

xhi < xmax + 0,5·h .

 4. В соответствии со шкалой интервалов производится группирование значений признака - для каждого частичного интервала вычисляется сумма частот ni вариант, попавших в i-й интервал. При этом в интервал включают значения случайной величины, большие или равные нижней границе и меньшие верхней границы интервала.

1.4 Полигон и гистограмма

Для наглядности строят различные графики статистического распределения. По данным дискретного вариационного ряда строят полигон частот или относительных частот.

 Полигоном частот называют ломанную, отрезки которой соединяют точки (x1; n1), (x2; n2), ..., (xk; nk). Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат - соответствующие им частоты ni. Точки ( xi; ni) соединяют отрезками прямых и получают полигон частот (Рис. 1).

 Полигоном относительных частот называют ломанную, отрезки которой соединяют точки (x1; W1), (x2; W2), ..., (xk; Wk). Для построения полигона относительных частот на оси абсцисс откладывают варианты xi, а на оси ординат - соответствующие им относительные частоты Wi. Точки ( xi; Wi) соединяют отрезками прямых и получают полигон относительных частот. В случае непрерывного признака целесообразно строить гистограмму.

 Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высоты равны отношению ni / h (плотность частоты).

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии ni / h.

Площадь i - го частичного прямоугольника равна hni / h = ni - сумме частот вариант i - го интервала; следовательно, площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

 Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высоты равны отношению Wi / h (плотность относительной частоты).

Для построения гистограммы относительных частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии Wi / h (Рис. 2).

Площадь i - го частичного прямоугольника равна hWi / h = Wi - относительной частоте вариант попавших в i - й интервал. Следовательно, площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

Рис. 1. Полигон частот

Рис. 2. Гистограмма относительных частот


1.4 Оценка параметров генеральной совокупности

Основными параметрами генеральной совокупности являются математическое ожидание (генеральная средняя) М(Х) и среднее квадратическое отклонение s. Это постоянные величины, которые можно оценить по выборочным данным. Оценка генерального параметра, выражаемая одним числом, называется точечной.

 Точечной оценкой генеральной средней является выборочное среднее .

 Выборочным средним называется среднее арифметическое значение признака выборочной совокупности.

Если все значения x1, x2,..., xn признака выборки различны (или если данные не сгруппированы), то:

Если же все значения признака x1, x2,..., xn имеют соответственно частоты n1, n2,..., nk, причем n1 + n2 +...+ nk = n (или если выборочное среднее вычисляется по вариационному ряду), то

В том случае, когда статистические данные представлены в виде интервального вариационного ряда, при вычислении выборочного среднего  значениями вариант считают середины интервалов.

 Выборочное среднее является основной характеристикой положения, показывает центр распределения совокупности, позволяет охарактеризовать исследуемую совокупность одним числом, проследить тенденцию развития, сравнить различные совокупности (выборочное среднее является той точкой, сумма отклонений наблюдений от которой равна 0).

Для оценки степени разброса (отклонения) какого-то показателя от его среднего значения, наряду с максимальным и минимальным значениями, используются понятия дисперсии и стандартного отклонения.

 Дисперсия выборки или выборочная дисперсия (от английского variance) – это мера изменчивости переменной. Термин впервые введен Фишером в 1918 году.

 Выборочной дисперсией Dв называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения .

Если все значения x1, x2,..., xn признака выборки объема n различны, то:

Если же все значения признака x1, x2,..., xn имеют соответственно частоты n1, n2,..., nk, причем n1 + n2 +...+ nk = n, то

Дисперсия меняется от нуля до бесконечности. Крайнее значение 0 означает отсутствие изменчивости, когда значения переменной постоянны.

 Среднее квадратическое отклонение (стандартное отклонение), (от английского standard deviation) вычисляется как корень квадратный из дисперсии.

Чем выше дисперсия или стандартное отклонение, тем сильнее разбросаны значения переменной относительно среднего.

 Непараметрическими характеристиками положения являются мода и медиана.

 Модой Mo называется варианта, имеющая наибольшую частоту или относительную частоту.

 Медианой Me называется варианта, которая делит вариационный ряд на две части, равные по числу вариант.

При нечетном числе вариант (n=2k+1)

Me = xk+1,

а при четном числе вариант (n=2k)

Me = (xk + xk+1)/2.

2. Корреляционный и регрессионный анализ

2.1 Корреляционный анализ

Корреляционный анализ предусматривает установление статистической связи между случайными величинами. Он может быть использован в педагогических исследованиях для оценки влияния одних факторов на другие и установления связи между ними в совокупности с другими параметрами – математическими ожиданиями и среднеквадратическими отклонениями. Корреляционный анализ непосредственно не может быть применен к выявлению причинно-следственных связей между случайными процессами. Он только устанавливает связь статистических характеристик связанных случайных процессов.

Пусть имеется две случайные величины X и Y c математическими ожиданиями mx и my  соответственно. Корреляционный момент

 Kxy =M((X-mx)(Y-my)) будет характеризовать связь между величинами  X и Y. Для удобства использования корреляционные моменты нормируют по формуле

 Kk=,  где σx и  σy - среднеквадратические отклонения величин X и Y. Величина Kk - называется коэффициентом корреляции величин X и  Y.

   Для дискретных случайных величин, с которыми мы имеем дело, оценка коэффициента корреляции вычисляется по формуле

      Kk= , где          (1)

   Xj  и  Yj  - реализации случайных величин X и Y,

   mx  и   my  - математические ожидания  X  и Y.

 

   Формула для вычисления коэффициента корреляции справедлива при условии, что связь между случайными величинами линейна и каждая из этих величин подчинена нормальному закону.

 

 Пример

   Оценить статистическую связь между уровнем школьной подготовки и успеваемостью студентов первого курса по дисциплине «Информатика» Школьная подготовка оценивается путем тестирования при поступлении в вуз (величина X). Успеваемость студентов оценивается по результатам экзамена после первого семестра (величина Y). Номер студента обозначен N.

Исходные данные для расчета сведены в таблицу

 

                                                 Таблица

N

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

X

78

80

71

65

73

75

84

92

97

87

92

88

91

82

87

Y

70

83

80

77

71

80

73

88

91

84

88

91

82

75

87

   Подставив данные из таблицы в выражение (1), получаем Kk=0,78.

  Видим, что статистические характеристики величин  X  и Y близки друг к другу.

2.1 Регрессионный анализ

Регрессионный анализ ставит перед собой задачу статистического исследования зависимости между зависимой переменной и независимой переменной (регрессором  или  предикатором). В простейшем случае предполагается, что эта зависимость является линейной. Решается задача построения линейной зависимости  вида  y=ax+b, где хi  и   yi   независимая и зависимая переменный соответственно (i=1,2,3,…). Решение находится методом наименьших квадратов.  Минимизируется величина

min  находятся коэффициенты   a    и   b.

       Расчетные формулы имеют следующий вид:

               a=                   b=

По существу,  совокупность экспериментально полученных точек приближенно заменяется аналитической зависимостью  y=ax+b.   Такая замена существенно упрощает математические преобразования и может быть использована при  построении аналитических моделей. В общем случае для построения регрессионной зависимости может быть выбрана не только линейная, но и любая другая функция. Естественно, формулы вычисления искомых параметров усложняются.

3. Математические методы оптимизации экспериментов

3.1 Симплексный метод оптимизации

Симплексом называется правильный многогранник, имеющий п+1 вершину, где п - число факторов, влияющих на процесс. Так, например, если факторов два, то симплексом является правильный треугольник.

 

Рис.1 Оптимизация по симплексному методу

Начальная серия опытов соответствует вершинам исходного симплекса (точки 1, 2 и 3). Условия этих первых опытов берутся из области значений факторов, соответствующих наиболее благоприятным из известных режимов оптимизируемого процесса. Сравнивая между собой результаты опытов в точках 1, 2 и 3, находят среди них самый «плохой», с точки зрения выбранного критерия оптимальности. Пусть, например, самым «неудачным» оказался опыт в точке 1. Этот опыт исключают из рассмотрения, а вместо него в состав симплекса вводят опыт в точке 4, которая симметрична точке 1 относительно противоположной стороны треугольника, соединяющей точки 2 и 3.

Далее сравнивают между собой результаты опытов в вершинах нового симплекса, отбрасывают самый «неудачный» из них и переносят соответствующую вершину симплекса в точку 5. Затем рассмотренная процедура повторяется в течение всего процесса оптимизации.

Если экстремум критерия оптимальности достигнут, то дальнейшее движение симплекса прекращается. Это значит, что новый шаг возвращает исследователя в предыдущую точку факторного пространства.

Если существует несколько экстремумов критерия оптимальности, то этот метод позволяет найти тот из них, который расположен ближе к точкам исходного симплекса. Поэтому, если есть подозрение о существовании нескольких экстремумов критерия оптимальности, нужно осуществить их поиск, каждый раз начиная оптимизацию из новой области факторного пространства. Затем следует сравнить между собой найденные оптимальные условия и из всех вариантов выбрать наилучший.

При оптимизации необходимо принимать во внимание ограничения, наложенные на влияющие факторы и функции отклика.

Важно отметить, что при пользовании симплексным методом не обязательно дублировать опыты. Дело в том, что ошибка в отдельном опыте может только несколько замедлить оптимизацию. Если же последующие опыты выполняются безупречно, то движение к оптимуму продолжается.

Матрица опытов исходного симплекса в кодированных переменных приведена в табл.11.

Величины, входящие в эту таблицу, рассчитываются по следующим формулам:

                                   (*)

 

Здесь i—номер фактора в матрице планирования. Символом 0 обозначены координаты центра плана, т. е. основной уровень.

Таблица 11

Матрица исходного симплекса

 

Номер опыта

X1

X2

. . .

Xn-1

Xn

Функция отклика

1

K1

K2

Kn-1

Kn

Y1

2

-R1

K2

. . .

Kn-1

Kn

Y2

3

о

-R2

. . .

Kn-1

Kn

Y3

п-\

0

0

Kn-1

Kn

Yn-1

п

0

0

-Rn-1

Kn

Yn

п+1

0

0

0

-Rn

Yn+1

 

Опыты, представленные в табл. 11, соответствуют вершинам симплекса, сторона которого равна единице, а центр совпадает с началом координат (в кодированных переменных).

Результаты расчетов, выполненных на основании табл. 11 и формул (*) .приведены в табл. 12.

Таблица 12 Условия начальной серии опытов

 

Номер опыта

X1

X2

X3

X4

1

0,5

0,289

0,204

0,158

2

—0,5

0,289

0,204

0,158

3

0

-0,578

0,204

0,158

4

0

0

-0,612

0,158

5

0

0

0

—0,632

 

Аналогично можно рассчитать условия исходной серии опытов для большего количества факторов.

Очевидно, наибольшее количество опытов приходится ставить в начале эксперимента. Затем на каждом шаге оптимизации выполняется только один опыт.

Приступая к оптимизации, необходимо с помощью табл. 11 или 12 рассчитать матрицу исходной серии опытов в физических переменных, пользуясь формулой

В дальнейшем все операции производятся только с физическими1. переменными.

Условия каждого нового опыта рассчитываются по формуле:

 

  (**)

где п—число факторов в матрице планирования;

j — номер опыта;

i—номер фактора;

—значение i-го фактора в самом «неудачном» опыте предыдущего симплекса.

Следует отметить, что на любом шаге оптимизации, осуществляемой симплексным методом, можно включить в программу исследований новый фактор, который до тех пор не принимался во внимание, но оставался на постоянном уровне.

При этом значения всех ранее рассматриваемых факторов рассчитываются по формуле:

 

где 1= 1, 2,..., п, то есть являются средними арифметическими значениями соответствующих координат предыдущего симплекса.

Значение вновь вводимого фактора определяется по формуле:

.где x0(n+1)—основной уровень этого фактора;

Δxn+1—выбранный шаг варьирования для данного фактора;

Rn+1, kn+1—величины, рассчитываемые по формулам (*).

Отметим, что добавление нового фактора в состав полного «факторного эксперимента сопровождается увеличением количества опытов вдвое. В этом смысле симплексный метод имеет очевидное преимущество.

Пример 3.2. Пусть требуется с помощью симплексного метода оптимизировать выход целевого продукта у (%), который получается при взаимодействии двух реагентов с концентрациями x1 и  x2 ()   при температуре x3 (°С).

Выберем основные уровни и шаги варьирования факторов и сведем их в табл. 13.

Таблица 13

Значения уровней факторов и шагов варьирования

Фактор

Основной уровень

Шаг варьирования

x2 ()

1,0

0,1

x2 ()

1,5

0,2

x3 (°С).

60,0

5,0

 

Пользуясь формулой (3.5) и табл. 12, рассчитаем условия проведения первых четырех опытов и полученные результаты сведем в табл. 14. Так, например, для третьего опыта

x31=1+0,1*0==1;  x32== 1,50 +0,2 (—0,578) ==1,38; x33=60+5*0,204==61.

Таблица 14 Оптимизация симплексным методом

 

Номер опыта

x1

x2

x3

Функция отклика

1

1,05

1,56

61

72,3

2

0,95

1,56

61

70,1

3

1,00

1,38

61

65,4

4

1,00

1.50

57

68,2

5

1,00

1,70

58

73,9

6

1,00

1,72

63

76,5

 

Сравнивая между собой результаты первых четырех опытов, видим, что самый низкий выход целевого продукта получился в третьем опыте. Этот опыт следует исключить из дальнейшего рассмотрения.

Заменим его опытом 5, условия проведения которого рассчитаем по формуле (**):

 

В новом симплексе, образованном опытами 1, 2, 4 и 5, самым «неудачным» является опыт 4. Его заменим опытом 6, условия которого найдем, пользуясь той же формулой (**).

Далее процедура оптимизации может быть продолжена аналогично.

Рассмотрим теперь вопрос о том, как включить в программу исследований еще один фактор, например скорость вращения мешалки. Пусть до этих пор она была постоянной и равной 500 об/мин. Теперь будем считать эту величину фактором x4 и примем для нее шаг варьирования Δx4==100 об/мин.

Предыдущий симплекс для трех факторов (см. табл. 14) состоит из опытов 1, 2, 5 и 6. Чтобы из него получить новый симплекс для четырех факторов, введем опыт 7 (табл. 15).

 

Таблица 15 Добавление нового фактора в программу оптимизации

 

Номер опыта

x1

x2

x3

x4

Функция отклика

1

1,05

1,56

61

500

72,3

2

0,95

1,56

61

500

70,1

5

1,00

1,70

58

500

73,9

6

1,00

1,72

63

500

76,5

7

1,00

1,64

61

580

78,1

 

Условия проведения 7-го опыта найдем по формулам     (3.7) и (3.8):

Далее оптимизацию можно продолжить с учетом всех четырех факторов, пользуясь рассмотренной выше процедурой.


 

А также другие работы, которые могут Вас заинтересовать

60648. Маски и каналы 2.44 MB
  В этом уроке вы узнаете как: Уточнять выделение с помощью быстрой маски. Сохранять выделение как маску канала Просматривать маску с помощью палитры Chnnels Каналы. Рисовать в маске чтобы модифицировать выделение.