4533

Взаимозаменяемость, методы и средства контроля зубчатых колес и передач

Научная статья

Производство и промышленные технологии

Взаимозаменяемость, методы и средства контроля зубчатых колес и передач Зубчатые колеса и передачи классифицируют по различным признакам: по виду поверхностей, на которых располагаются зубцы (цилиндрические и конические, внутренние и внешние),...

Русский

2012-11-22

96 KB

76 чел.

Взаимозаменяемость, методы и средства контроля зубчатых колес и передач

Зубчатые колеса и передачи классифицируют по различным признакам:

  •  по виду поверхностей, на которых располагаются зубцы (цилиндрические и конические, внутренние и внешние),
  •  по направлению зубцов (прямозубые, косозубые, винтовые, шевронные),
  •  по профилю зубцов (эвольвентные, циклоидальные, часовые, цевочные, Новикова),
  •  по направлению осей вращения (цилиндрические – с параллельными осями, конические – с пересекающимися, винтовые и червячные – со скрещивающимися).

Основания классификации не исчерпываются приведенными примерами. Среди множества классификаций важнейшими для выбора точностных параметров являются те, которые определяют функциональное назначение передачи.

Требования, предъявляемые к точности зубчатых передач, зависят от функционального назначения передач и условий их эксплуатации. В приборах, делительных машинах, в технологическом оборудовании для нарезания резьбы и зубчатых колес применяют так называемые «отсчетные передачи», в которых главное внимание уделяют пропорциональности углов поворота зубчатых колес (кинематической точности передачи). Кинематическую точность передачи достаточно полно характеризует постоянство передаточного отношения за полный оборот зубчатого колеса. Колеса этих передач в большинстве случаев имеют малый модуль и работают при малых нагрузках и низких скоростях.

Достаточно часто встречаются в технике и «силовые» или тяжело нагруженные зубчатые передачи, к точности вращения колес в которых не предъявляют высоких требований (передачи в домкратах, лебедках, прессах и т.д.). При передаче больших крутящих моментов требуется хороший контакт боковых поверхностей зубьев в передаче и максимальное использование площади рабочих поверхностей зубьев.

Деление зубчатых передач на «отсчетные» и «силовые» достаточно условно, поскольку все они передают крутящие моменты и все должны обеспечить пропорциональность углов поворота. Например, передачи в механических или электронно-механических часах вполне могут оказаться «силовыми», если малые по абсолютному значению крутящие моменты передаются узкими зубцами с мелким модулем.

Если у зубчатых передач нет явно выраженного эксплуатационного характера, их относят к передачам общего назначения. К таким передачам не предъявляют повышенных требований по точности.

В редукторах турбин и высокооборотных двигателей, в других изделиях с высокой круговой частотой вращения применяют «скоростные передачи» (высокоскоростные, быстроходные передачи), для которых основными являются требования к плавности работы, что необходимо для снижения уровня вибраций и шума при работе изделия. Плавность работы передачи зависит от колебания мгновенных передаточных отношений (различия передаточных отношений в разные моменты зацепления), которые многократно воспроизводятся за один оборот зубчатого колеса. Основными причинами неплавной работы являются такие погрешности зубчатых колес, как неправильное взаимное расположение зубьев (погрешности шага) и неточность формы рабочих поверхностей (погрешности формы профиля зубьев).

Колеса скоростных передач, как правило, имеют средние модули и передают не слишком большие моменты, однако их зубья могут подвергаться значительным динамическим воздействиям.

В зависимости от условий работы меняются требования и к боковому зазору между нерабочими профилями зубьев. Эвольвентное зацепление теоретически способно работать при нулевых боковых зазорах (толщина зуба, находящегося в зацеплении, равна ширине впадины ответного колеса). Однако неточности изготовления зубчатого венца приводят к искажению формы и взаимному смещению реальных профилей зубьев, что может вызвать их деформацию или поломку, если толщина зуба будет больше ширины впадины. Смещение реальных профилей зубьев может также быть следствием неточностей монтажа зубчатых колес. Видоизменяют профиль зубьев и его расположение также температурные и силовые деформации.

Для компенсации неточностей изготовления и монтажа, силовых и температурных деформаций используют зазор между нерабочими сторонами профилей зубьев находящихся в зацеплении колес. Ширина впадины, превышающая толщину зуба, обеспечивает не только компенсацию технологических погрешностей и деформаций, но и служит также для размещения между зубьями слоя смазки, которая при отсутствии зазоров выдавливалась бы в процессе работы.

В реверсивных передачах и передачах, работающих в старт-стопном режиме, назначают минимальный боковой зазор, что позволяет предупреждать удары при перемене направления вращения или начале движения после остановки. Значительные зазоры назначают в передачах, работающих при высоких температурах, в открытых передачах с высоким риском загрязнения и т.д.

ГОСТ 1643 – 81 в принципе позволяет установить двенадцать степеней точности цилиндрических зубчатых колес и передач – с 1 по 12 в порядке убывания точности. В настоящее время допуски и предельные отклонения параметров зубчатых колес и передач нормированы для степеней точности 3...12, а степени 1 и 2 предусмотрены как перспективные. Для каждой передачи (и зубчатого колеса) установлены нормы точности (степени точности) трех видов, определяющие степени кинематической точности, плавности работы и контакта зубьев.

Независимо от степеней точности устанавливают виды сопряжений, которые определяют требования к боковому зазору. ГОСТ 1643 устанавливает для зубчатых колес и передач с модулем больше 1 мм шесть видов сопряжений (A, B, C, D, E, H) и восемь видов допуска (a, b, c, d, h, x, y, z) гарантированного бокового зазора jn min (рисунок 13.1).

Рисунок 13.1 – Виды сопряжений, гарантированные боковые зазоры и допуски боковых зазоров

С увеличением в сопряжении гарантированного бокового зазора jn min обычно предусматривается возрастание вида допуска зазора обозначаемого одноименной виду сопряжения строчной буквой (кроме вида допуска e). В большинстве случаев для зубчатых колес и передач рекомендуется поддерживать определенное соответствие между видом сопряжения, допуском бокового зазора и классом отклонения межосевого расстояния (таблица 13.1).

Реальный боковой зазор в передаче зависит от вида сопряжения, устанавливающего минимальное значение зазора, от допуска зазора, ограничивающего рассеяние зазора между минимально гарантированным и максимально допустимым значениями, а также от соблюдения межосевого расстояния в передаче, рассеяние которого ограничивается выбранным классом точности.

Таблица 13.1 – Рекомендуемое соответствие между видом сопряжения, допуском бокового зазора и классом отклонения межосевого расстояния

Степень точности

Вид сопряжения

Допуск бокового зазора

Класс отклонений межосевого расстояния

37

37

38

39

311

312

H

E

D

C

B

A

h

h

d

c

b

a

II

II

III

IV

V

VI

Для отдельно взятого зубчатого колеса боковой зазор рассматривают как зазор между нерабочими профилями зубьев в воображаемом сопряжении рассматриваемого колеса с идеальным колесом при выдержанном номинальном межосевом расстоянии.

Обозначение точности зубчатой передачи или колеса включает обозначения всех назначенных норм точности, то есть степеней точности по показателям кинематической точности, плавности работы, контакта зубьев и норм бокового зазора в передаче. При установлении неодинаковых степеней точности по разным нормам, а также при несоответствии между видом сопряжения, допуска бокового зазора и классом точности межосевого расстояния, в обозначении пишутся три числа (указание степеней точности) и две буквы (вид сопряжения и допуск бокового зазора), а через косую черту указывается класс отклонения межосевого расстояния. Например, обозначение точности зубчатого колеса или передачи

7–8–7–Вс/IV ГОСТ 1643–81

расшифровывается следующим образом: степень точности по нормам кинематической точности 7, по нормам плавности работы 8, по нормам контакта зубьев 7, вид сопряжения В, вид допуска бокового зазора с, класс точности межосевого расстояния IV.

При одинаковых степенях точности и соблюдении соответствия вида сопряжения, допуска бокового зазора и класса межосевого расстояния обозначение существенно сокращается, например 9–В ГОСТ 1643-81 (степени точности по нормам кинематической точности, плавности работы и контакта зубьев 9, вид сопряжения В, вид допуска бокового зазора b, класс точности межосевого расстояния V).

Стандарт допускает определенное комбинирование норм кинематической точности, плавности работы и контакта по разным степеням точности. Поскольку между элементами зубчатых колес существует взаимосвязь, нормы плавности работы колес и передач могут быть не более чем на две степени точнее или на одну степень грубее норм кинематической точности. Нормы контакта зубьев можно назначать по любым степеням, более точным, чем нормы плавности, а также на одну степень грубее норм плавности.

По разным профилям зубьев (левым и правым) одного и того же зубчатого колеса могут быть заданы разные нормы точности, если это дает определенную экономию при обработке зубчатых колес, предназначенных для нереверсивной работы. Желательно чтобы колесо имело асимметричную ступицу во избежание неправильной сборки с переменой «левого» профиля зубьев на «правый».

Допускается не назначать, а значит и не контролировать степень точности на норму, не имеющую принципиального значения для конкретной конструкции зубчатого колеса. Если на одну из норм не задана степень точности, то на соответствующем месте обозначения точности зубчатого колеса вместо цифры ставят букву N (например 7–N–6–Ba ГОСТ 1643–81).

Для полной оценки точности геометрических параметров зубчатых колес необходимо обеспечить их контроль по всем нормам (с использованием показателей кинематической точности, плавности работы, контакта зубьев и бокового зазора в передаче). С этой целью разработаны и регламентированы стандартом так называемые контрольные комплексы показателей, обеспечивающие проверку соответствия зубчатого колеса всем установленным нормам. Примеры контрольных комплексов приведены в таблице 13.2.

Таблица 13.2 – Контрольные комплексы для зубчатых колес

№ комплекса

1

2

3

4

5

6

7

Виды норм точности

Показатели, включенные в комплекс для степеней точности

3–8

3–8

3–8

3–8

7–12

5–12

5–12

кинематической точности

F′i

Fp и Fpk

Fr и FvW

Fr и Fc

Fr

F″i и FvW

F″i и Fc

плавности работы

fi

fzk или fzz или fpb и ff или fpb и fpt

fi

контакта зубьев

Fβ или Fk или пятно контакта

бокового зазора

EHc или TH или EWms и TWm или EWs и TW

Каждый из контрольных комплексов устанавливает показатели, необходимые для контроля зубчатого колеса по всем назначенным нормам точности, причем все стандартные комплексы равноправны. Для контроля каждой из норм точности может быть выбран либо комплексный показатель, либо частный комплекс, характеризующий именно эту норму точности. Например, в контрольный комплекс может входить комплексный показатель кинематической точности F′ir, либо частные комплексы из элементарных показателей кинематической точности Fpr и Fpkr, либо Frr и FvWr. Показатели точности зубчатых колес и передач есть реальные значения, получаемые в ходе измерительного контроля (об этом свидетельствует буква r в конце подстрочного индекса). Установленные стандартом нормы (предельно допустимые значения или допуски) для зубчатых колес или передач с соответствующими номинальными параметрами и определенной степени точности обозначаются такими же литерами с индексами, но без последней в индексе буквы r, например, F′i, Fp, Fpk, Fr, FvW.

Выбор метода контроля зависит от технологии производства зубчатых колес и состояния зубообрабатывающего оборудования. Согласно положению стандарта если изготовитель существующей системой контроля технологического процесса обеспечивает требуемую точность изготовления и сборки зубчатых колес, непосредственный их контроль, а также контроль передач по всем показателям установленного контрольного комплекса не являются обязательными.

Если зубчатые колеса по точности соответствуют требованиям установленных норм, контроль зубчатой передачи в сборе необязателен; если собранная передача по точности отвечает требованиям назначенных норм, контроль точности зубчатых колес не является необходимым.

Выбор контрольного комплекса зависит от масштабов производства, требуемой точности и типоразмеров изготовляемых зубчатых колес, наличия зубоизмерительных средств, а также от назначения проверяемых зубчатых колес. Следует учитывать и двоякую цель измерений: во-первых, контроль изготовленных колес предназначен для выявления и изъятия бракованных деталей (приемочный контроль), а во-вторых, результаты измерений зубчатых колес могут быть использованы для оперативного вмешательства в управление производством и корректировки технологических процессов.

При приемочном контроле зубчатых колес в соответствии с основным следствием из принципа инверсии (необходимость соблюдения единства баз) рекомендуется использовать в качестве измерительной базы конструкторскую (монтажную) базу, т.е. поверхность, определяющую положение зубчатого колеса в собранном узле или механизме. Для соблюдения этих условий при приемочном контроле в качестве измерительной базы желательно воспроизвести рабочую ось колеса – его основную конструкторскую базу, а сам контроль осуществлять в однопрофильном зацеплении с ответным или с контрольным зубчатым колесом. Понятно, что такие требования не всегда реализуемы и их соблюдение обеспечивает возможности измерения ограниченной номенклатуры показателей.

В стандарте указано, что все контрольные комплексы являются равнозначными, однако при выборе контрольного комплекса для готовых зубчатых колес следует отдавать предпочтение не частным комплексам, а комплексным показателям.

Поэлементный контроль геометрических показателей зубчатых колес имеет определенные достоинства. Выбор поэлементных показателей точности вместо комплексных может быть обусловлен относительной простотой и дешевизной средств измерений по сравнению с приборами для измерения комплексных показателей. Кроме того, средства измерений поэлементных показателей в ряде случаев значительно удобнее при выявлении конкретных технологических погрешностей (в том числе с целью подналадки технологического процесса). Поэтому при контроле точности технологических процессов чаще выбирают поэлементные показатели (параметры), непосредственно связанные с технологическими источниками погрешностей. Поэлементные измерения показателей точности зубчатых колес можно осуществлять непосредственно на технологическом оборудовании или на рабочем месте около него. Некоторые параметры зубчатого колеса можно измерять, не снимая колеса со станка.

Основные показатели кинематической точности

Наиболее полно кинематическая точность колес выявляется при измерении кинематической погрешности F′ir или накопленной погрешности шага зубчатого колеса Fpr, которые являются комплексными показателями.

Вместо этих параметров могут быть использованы частные контрольные комплексы, (например Frr и FvWr), содержащие требования к двум параметрам колеса, связанным с радиальной и тангенциальной составляющими кинематической погрешности. В приведенном частном комплексе Frr – радиальное биение зубчатого венца, а FvWr – колебание длины общей нормали (тангенциальная составляющая).

Биение рабочей оси зубообрабатывающего станка и неточность установки заготовки колеса относительно этой оси вызывают появление радиальной составляющей кинематической погрешности. Тангенциальная составляющая кинематической погрешности связана с погрешностями угловых («делительных») кинематических перемещений элементов зуборезного станка.

В частных контрольных комплексах, определяющих нормы кинематической точности, используют такие показатели, как колебание измерительного межосевого расстояния за оборот колеса F″ir или уже упоминавшееся радиальное биение зубчатого венца Frr (характеризуют радиальную составляющую кинематической погрешности), дополненные погрешностью обката Fcr или колебанием длины общей нормали FvWr (они характеризуют тангенциальную составляющую кинематической погрешности). Стандарт предусматривает возможности применения других частных комплексов, определяющих степень кинематической точности колес.

Основные показатели плавности

Наиболее совершенным способом выделения циклических погрешностей является гармонический анализ результатов измерения кинематической погрешности, для выделения всех значимых циклических погрешностей, но поскольку измерения на кинематометрах сравнительно редки и дороги, чаще используют другие показатели плавности.

К ним можно отнести такие, как местная кинематическая погрешность fir и циклическая погрешность колеса fzkr, равная удвоенной амплитуде гармонической составляющей кинематической погрешности зубчатого колеса.

Под циклической погрешностью зубцовой частоты fzzr понимают составляющую кинематической погрешности колеса, периодически повторяющуюся за один его оборот с частотой повторений, равной частоте входа зубьев в зацепление.

Показателями плавности являются отклонения шага зубьев зубчатого колеса fptr и отклонения шага зацепления fpbr от номинальных значений, а также погрешности профиля зубьев ffr и др.

Под отклонением (торцового) шага зубьев зубчатого колеса fptr  понимают разность действительного шага и расчетного торцового шага зубчатого колеса

Под действительным шагом зацепления понимают расстояние между параллельными плоскостями, касательными к двум одноименным активным боковым поверхностям соседних зубьев зубчатого колеса.

Погрешность профиля зуба ffr – расстояние по нормали между двумя ближайшими друг к другу номинальными торцовыми профилями, между которыми находится действительный торцовый профиль на активном участке зуба зубчатого колеса. Под действительным торцовым профилем зуба понимается линия пересечения действительной боковой поверхности зубчатого колеса с плоскостью, перпендикулярной к его рабочей оси, а под активным участком зуба – та часть поверхности, которая выполнена по эвольвенте и контактирует с ответным колесом.

Основные показатели полноты контакта

Полноту контакта рабочих поверхностей зубьев оценивают по пятну контакта (интегральный показатель контакта) или по частным показателям. Пятно контакта можно определять непосредственно в собранной передаче, а также на контрольно-обкатных станках, специальных стендах или на межосемерах при зацеплении контролируемого колеса с измерительным и соблюдении номинального межосевого расстояния.

Для контроля пятна контакта боковую поверхность меньшего или измерительного колеса покрывают краской (используют свинцовый сурик, берлинскую лазурь), причем толщина слоя не превышает (4...6) мкм и производят обкатку колес при легком притормаживании. Размеры пятна контакта определяют в относительных единицах – процентах от длины и от высоты активной поверхности зуба. При оценке абсолютной длины пятна контакта из общей длины (в миллиметрах) вычитают разрывы пятна, если они превышают значение модуля зубчатого колеса.

Оценка точности контакта боковой поверхности зубьев в передаче может быть выполнена раздельным контролем элементов, влияющих на продольный и высотный контакты зубьев колес.

Основные показатели зазора между нерабочими боковыми поверхностями зубьев

В качестве показателей зазора между боковыми поверхностями зубьев для зубчатого колеса могут быть использованы:

  •  межосевое расстояние, определяемое размерами зуба контролируемого колеса при комплексном контроле в беззазорном зацеплении с измерительным колесом;
  •  толщина зуба по хорде на заданном расстоянии от окружности выступов;
  •  длина общей нормали, значение которой зависит от толщины зуба;
  •  размер по роликам М, определяемый смещением исходного контура.

Можно использовать и некоторые другие показатели.

Приборы для контроля параметров зубчатых колес

Для контроля параметров зубчатых колес применяют множество специально разработанных приборов. К ним относятся уже упоминавшиеся кинематомеры и межосемеры, а также приборы для контроля шага (шагомеры), приборы для контроля отклонений и колебаний длины общей нормали (нормалемеры) и множество других. Некоторые приборы предназначены для контроля только одного параметра (эвольвентомер – для контроля профиля зуба, специальный шагомер для контроля шага зацепления), другие позволяют контролировать несколько параметров, в том числе и относящиеся к разным нормам точности.

Межосемер (иногда встречается устаревшее название прибора – межценромер) можно использовать для контроля колебания межосевого расстояния за оборот колеса F″ir (показатель из норм кинематической точности), колебания межосевого расстояния на одном зубе fir (показатель из частного комплекса для оценки норм плавности), отклонения межосевого расстояния от номинального Ea"s и Ea"i (показатели для оценки норм бокового зазора). На этом же приборе можно проконтролировать и пятно контакта.

Указание норм точности на чертежах зубчатых колес

При оформлении чертежей зубчатых колес в соответствии с требованиями ЕСКД в правой верхней части чертежа помещают таблицу параметров, которая состоит из трех частей, разделяемых основными линиями.

В первой (верхней) части таблицы помещают основные данные, которые включают модуль, число зубьев, нормальный исходный контур (для нестандартного указывают все необходимые для воспроизведения контура параметры, стандартный задают ссылкой на стандарт), обозначение норм точности по типу 9–8–7 F ГОСТ 9178–81 или 8B ГОСТ 1643–81 и другие данные.

Во второй части таблицы помещают данные для контроля норм точности, которые для колес с нестандартным исходным контуром включают полный контрольный комплекс для проверки по нормам кинематической точности, плавности, контакта и бокового зазора. Для колес со стандартным исходным контуром данные для контроля включают только данные для проверки по нормам бокового зазора, например:

       _              _

  •  постоянная хорда sc и высота до постоянной хорды hc (при этом указывают номинальное значение постоянной хорды до третьего знака после запятой (например, 3,803), а высоту до постоянной хорды приводят в виде номинального значения и двух отрицательных отклонений, например

  – 0,099

3,174 – 0,178 

     _                _

  •  толщина по хорде sy и высота до постоянной хорды hay (в этом случае указывают номинальное значение высоты до хорды и контролируемое значение толщины с двумя отрицательными отклонениями);
  •  размер по роликам M и диаметр ролика D (диаметр ролика указывают как номинальное значение, а контролируемый размер M – с двумя отрицательными отклонениями);
  •  длину общей нормали W (номинальное значение с двумя отрицательными отклонениями).

В третьей части таблицы помещают справочные данные, в которые могут включаться делительный диаметр колеса, данные о сопрягаемом зубчатом колесе и прочие.


 

А также другие работы, которые могут Вас заинтересовать

67517. Электропривод как система. Классификация электроприводов. Общие требования к электроприводу. Состав электропривода и назначение его элементов 94.5 KB
  Электрический привод совокупность электродвигательного устройства ЭД передаточного устройства ПУ управляющего устройства УУ усилительно-преобразовательного устройства УПУ и информационного устройства ИУ см. Функциональная схема электропривода Информационное устройство ИУ содержит датчики сигналов.
67518. Учение о биосфере. Ресурсы биосферы и пути их рационального использования 100.5 KB
  Правильно понять найти рациональное решение проблемы взаимодействия системы общество техника природа помогает учение о биосфере принадлежащее русскому ученому Владимиру Ивановичу Вернадскому. К ним относятся: энергия Солнца и ветра почвы земельные ресурсы растения животные минеральное сырьё вода и др.
67519. Уравнения и характеристики двигателя постоянного тока независимого возбуждения. Управление напряжением якоря 131.5 KB
  Механические характеристики двигателя рассматривались без учета реакции якоря, т.е. влияния тока якоря на основной магнитный поток. Различают поперечную, продольную и коммутационную реакции якоря. Поперечную реакцию якоря можно учесть зависимостью...
67520. Жесткость механической характеристики. Управление реостатное и магнитным потоком 116.5 KB
  Для управления электродвигателем последовательно с обмоткой якоря включают реостат или изменяют ток возбуждения и магнитный поток. На рис. 3.2 показана схема включения двигателя постоянного тока с двумя управляющими реостатами.
67521. Уравнения и характеристики двигателя постоянного тока последовательного возбуждения. Управление напряжением и реостатное 225.5 KB
  Схема включения двигателя последовательного возбуждения показана на рис. Схема включения двигателя последовательного возбуждения Уравнение баланса напряжений и выражения для ЭДС и электромагнитного момента имеют вид: U = rя rв I Eя; 4. Механические характеристики двигателя последовательного возбуждения...
67522. Причины и признаки экологического кризиса. Глобальные экологические проблемы 114 KB
  По ходу развития цивилизации перед человечеством неоднократно возникали сложные проблемы порою планетарного характера. В полной мере эти проблемы проявились уже во второй половине и в особенности в последней четверти XX века то есть на рубеже двух веков и даже тысячелетий.
67523. Управление шаговым двигателем с реактивным ротором и линейным шаговым двигателем с постоянным магнитом 273.5 KB
  Фазы обмотки питаются прямоугольными импульсами напряжения. В ответ на каждый импульс ротор поворачивается на определенный угол и останавливается в ожидании следующего импульса. Показаны пути замыкания магнитного потока Ф созданного фазой А при подаче на нее импульса напряжения U0.
67524. Моменты синхронного двигателя и его пуск при питании от инвертора частоты. Синхронизирующий момент 595.5 KB
  Схема включения обмоток синхронного двигателя Вращающееся магнитное поле статора увлекает за собой ротор-индуктор который в установившемся режиме вращается синхронно с полем. Рассмотрим СД ротор которого имеет неявно выраженные полюса с постоянным магнитным потоком...
67525. Моментный электропривод с синхронным двигателем и синусно-косинусным вращающимся трансформатором 364.5 KB
  В целом электропривод ведет себя как электромеханическая система с пропорциональным управлением и гибкой тахометрической обратной связью. Следует обратить внимание, что амплитудно-модулированные сигналы и синусно-косинусный вращающийся трансформатор СКВТ были применены для получения двойной информации...