45455

Устойчивость систем управления

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

В соответствии с классическим методом решение дифференциального уравнения ищется в виде: yt = yвынt yсвt. Здесь yсвt общее решение однородного дифференциального уравнения то есть уравнения с нулевой правой частью: oyn 1yn1 . Поэтому решение данного уравнения называется свободной составляющей общего решения. yвынt частное решение неоднородного дифференциального уравнения под которым понимается уравнение с ненулевой правой частью.

Русский

2013-11-17

57.5 KB

0 чел.

  1.  Устойчивость систем управления.

Понятие устойчивости системы

  

Под устойчивостью системы понимается способность ее возвращаться к состоянию установившегося равновесия после снятия возмущения, нарушившего это равновесие. Неустойчивая система непрерывно удаляется от равновесного состояния или совершает вокруг него колебания с возрастающей амплитудой.

Устойчивость линейной системы определяется не характером возмущения, а структурой самой системы (рис.61). Говорят, что система устойчива "в малом", если определен факт наличия устойчивости, но не определены ее границы. Система устойчива "в большом", когда определены границы устойчивости и то, что реальные отклонения не выходят за эти границы.

В соответствии с классическим методом решение дифференциального уравнения ищется в виде:

 

y(t) = yвын(t) + yсв(t).

 

Здесь yсв(t) - общее решение однородного дифференциального уравнения, то есть уравнения с нулевой правой частью:

 

aoy(n) + a1y(n-1) + ... + a(n-1)y’ + a(n)y = 0.

 

Физически это означает, что все внешние воздействия сняты и система абсолютно свободна, ее движения определяются лишь собственной структурой. Поэтому решение данного уравнения называется свободной составляющей общего решения. yвын(t) - частное решение неоднородного дифференциального уравнения, под которым понимается уравнение с ненулевой правой частью. Физически это означает, что к системе приложено внешнее воздействие u(t). Поэтому вторая составляющая общего решения называется вынужденный. Она определяет вынужденный установившийся режим работы системы после окончания переходного процесса.

Можно провести аналогию между САУ и пружиной, колебания которой описываются аналогичным дифференциальным

уравнением (рис.62). Оттянем пружину, а затем отпустим, предоставив ее самой себе. Пружина будет колебаться в соответствии со свободной составляющей решения уравнения, то есть характер колебаний будет определяться только структурой самой пружины. Если в момент времени t = 0 подвесить к пружине груз, то на свободные колебания наложится внешняя сила Р. После затухания колебаний, описываемых только свободной составляющей общего решения, система перейдет в новый установившийся режим, характеризуемый вынужденной составляющей yвын = y(t ). Если внешнее воздействие само будет изменяться по синусоидальному закону P = Posin(t + ), то после затухания переходного процесса система будет совершать вынужденные колебания с той же частотой, что и вынуждающая сила, то есть yвын = ymaxsin(t + y).

Каждая составляющая общего решения уравнения динамики ищется отдельно. Вынужденная составляющая ищется на основе решения уравнения статики для данной системы для времени t . Свободная составляющая представляет собой сумму из n отдельных составляющих: , где pi корни характеристического уравнения D(p) = a0pn + a1pn-1 + a2pn-2 + ... + an = 0. Корни могут быть либо вещественными pi = ai, либо попарно комплексно сопряженными pi = ai ± ji. Постоянные интегрирования Аi определяются исходя из начальных и конечных условий, подставляя в общее решение значения u, y и их производные в моменты времени t = 0 и t .

Каждому отрицательному вещественному корню соответствует экспоненциально затухающая во времени составляющая yсв(t)i, каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует yсв(t)i = const (рис.63). Пара комплексно сопряженных корней с отрицательной вещественной частью определяет затухающие колебания с частотой i, при положительной вещественной части - расходящиеся колебания, при нулевой - незатухающие (рис.64).

 

 

Так как после снятия возмущения yвын(t) = 0, то устойчивость системы определяется только характером свободной составляющей yсв(t). zПоэтому условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанному в отклонениях, должна стремиться к нулю, то есть затухать.

Исходя из расположения на комплексной плоскости корни с отрицательными вещественными частями называются левыми, с положительными - правыми (рис.65).

Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю (в системах, где an = 0), а остальные левые, то система находится на границе апериодической устойчивости. Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости.

Правила, позволяющие судить о знаках корней характеристического уравнения без его решения, называются критериями устойчивости. Их можно разделить на алгебраические (основаны на составлении по данному характеристическому уравнению по определенным правилам алгебраических выражений, по которым можно судить об устойчивости САУ) и частотные (основаны на исследовании частотных характеристик).


 

А также другие работы, которые могут Вас заинтересовать

14099. Розпис тарелі «Летіла зозуля з яру в долину» та Ліплення з пластиліну на тему «Красивий кіт» 1.47 MB
  Конспект залікового уроку з Образотворчого мистецтва проведеного в 2А класі ЗОШ ІІІІ ступенів № 2 Тема уроку: Розпис тарелі Летіла зозуля з яру в долину. Мета. Ознайомити учнів із традиційним видом українського декоративноприкладного мистецтва петриківським ...
14100. Конструювання моделей із сірникових коробок та Аплікація. Види аплікацій. Естетика і культура 5.11 MB
  Конспект залікового уроку з трудового навчання проведеного в 2А класі ЗОШ ІІІІ ступенів № 2 Тема уроку: Конструювання моделей із сірникових коробок. Обєкт праці. Виготовлення моделей вантажних та легкових автомобілів. Мета. Ознайомити учнів із поняттям констр
14101. Конспект уроку Я і Україна. Декларація прав дитини. Про доброту і милосердя 607.11 KB
  Конспект уроку Я і Україна 2 клас 02. 03 Тема. Декларація прав дитини. Основний Закон держави. Обовязки батьків та дітей. Мета. Формувати в учнів уявлення про Декларацію прав людини Основний Закон нашої держави; зясувати обовязки батьків і дітей; виховувати шано...
14103. Секретарська справа. Конспект уроків та лекцій 767.33 KB
  УРОК № Тема: Вимоги до приміщення де знаходиться місце секретаря. Санітарно гігієнічні вимоги. Мета уроку: ознайомити учнів з загальними та санітарногігієнічними вимогами до приміщення секретаря. Ознайомити з сучасними тенденціями у обладнанні офісів та орга
14104. Легка атлетика. Біг на короткі дистанції. Техніка естафетного бігу та передачі естафетної палички 103 KB
  ПЛАН ВІДКРИТОГО ЗАНЯТТЯ для студентів денного відділення Тема заняття: Легка атлетика. Біг на короткі дистанції. Техніка естафетного бігу та передачі естафетної палички. Мета заняття: Місце проведення: Спортивний майданчик. Планконспект заняття ...
14105. Легка атлетика. Орієнтовний план уроку для учнів 5-х класів 43.5 KB
  Орієнтовний план уроку для учнів 5х класів початковий етап розвитку витривалості Тема уроку: Легка атлетика. Мета уроку: навчальна ознайомити з технікою бігу з низького старту. Вивчати техніку стрибку у кроці з приземленням на обидві ноги. Вивчити техніку метанн...
14106. Баскетбол. Конспект уроку для учнів 8 класу 142 KB
  КОНСПЕКТ УРОКУ для учнів 8 класу ТЕМА УРОКУ: БАСКЕТБОЛ ЗАВДАННЯ УРОКУ: вдосконалити техніку виконання ведення і передач мяча на місці і в русі; вдосконалити техніку кидків в корзину після подвійного кроку; виховувати почуття колективізму та взаємови
14107. Баскетбол. Урок з фізкультури 63.5 KB
  Місце проведення: спортивна зала Тема: Баскетбол Мета уроку: Поглибити знання учнів з історії виникнення й розвитку баскетболу. Повторити правила гри у баскетбол. Закріпити отримані дітьми навички й уміння з техніки виконання стійки гравця та пересування з мячем