45455

Устойчивость систем управления

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

В соответствии с классическим методом решение дифференциального уравнения ищется в виде: yt = yвынt yсвt. Здесь yсвt общее решение однородного дифференциального уравнения то есть уравнения с нулевой правой частью: oyn 1yn1 . Поэтому решение данного уравнения называется свободной составляющей общего решения. yвынt частное решение неоднородного дифференциального уравнения под которым понимается уравнение с ненулевой правой частью.

Русский

2013-11-17

57.5 KB

0 чел.

  1.  Устойчивость систем управления.

Понятие устойчивости системы

  

Под устойчивостью системы понимается способность ее возвращаться к состоянию установившегося равновесия после снятия возмущения, нарушившего это равновесие. Неустойчивая система непрерывно удаляется от равновесного состояния или совершает вокруг него колебания с возрастающей амплитудой.

Устойчивость линейной системы определяется не характером возмущения, а структурой самой системы (рис.61). Говорят, что система устойчива "в малом", если определен факт наличия устойчивости, но не определены ее границы. Система устойчива "в большом", когда определены границы устойчивости и то, что реальные отклонения не выходят за эти границы.

В соответствии с классическим методом решение дифференциального уравнения ищется в виде:

 

y(t) = yвын(t) + yсв(t).

 

Здесь yсв(t) - общее решение однородного дифференциального уравнения, то есть уравнения с нулевой правой частью:

 

aoy(n) + a1y(n-1) + ... + a(n-1)y’ + a(n)y = 0.

 

Физически это означает, что все внешние воздействия сняты и система абсолютно свободна, ее движения определяются лишь собственной структурой. Поэтому решение данного уравнения называется свободной составляющей общего решения. yвын(t) - частное решение неоднородного дифференциального уравнения, под которым понимается уравнение с ненулевой правой частью. Физически это означает, что к системе приложено внешнее воздействие u(t). Поэтому вторая составляющая общего решения называется вынужденный. Она определяет вынужденный установившийся режим работы системы после окончания переходного процесса.

Можно провести аналогию между САУ и пружиной, колебания которой описываются аналогичным дифференциальным

уравнением (рис.62). Оттянем пружину, а затем отпустим, предоставив ее самой себе. Пружина будет колебаться в соответствии со свободной составляющей решения уравнения, то есть характер колебаний будет определяться только структурой самой пружины. Если в момент времени t = 0 подвесить к пружине груз, то на свободные колебания наложится внешняя сила Р. После затухания колебаний, описываемых только свободной составляющей общего решения, система перейдет в новый установившийся режим, характеризуемый вынужденной составляющей yвын = y(t ). Если внешнее воздействие само будет изменяться по синусоидальному закону P = Posin(t + ), то после затухания переходного процесса система будет совершать вынужденные колебания с той же частотой, что и вынуждающая сила, то есть yвын = ymaxsin(t + y).

Каждая составляющая общего решения уравнения динамики ищется отдельно. Вынужденная составляющая ищется на основе решения уравнения статики для данной системы для времени t . Свободная составляющая представляет собой сумму из n отдельных составляющих: , где pi корни характеристического уравнения D(p) = a0pn + a1pn-1 + a2pn-2 + ... + an = 0. Корни могут быть либо вещественными pi = ai, либо попарно комплексно сопряженными pi = ai ± ji. Постоянные интегрирования Аi определяются исходя из начальных и конечных условий, подставляя в общее решение значения u, y и их производные в моменты времени t = 0 и t .

Каждому отрицательному вещественному корню соответствует экспоненциально затухающая во времени составляющая yсв(t)i, каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует yсв(t)i = const (рис.63). Пара комплексно сопряженных корней с отрицательной вещественной частью определяет затухающие колебания с частотой i, при положительной вещественной части - расходящиеся колебания, при нулевой - незатухающие (рис.64).

 

 

Так как после снятия возмущения yвын(t) = 0, то устойчивость системы определяется только характером свободной составляющей yсв(t). zПоэтому условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанному в отклонениях, должна стремиться к нулю, то есть затухать.

Исходя из расположения на комплексной плоскости корни с отрицательными вещественными частями называются левыми, с положительными - правыми (рис.65).

Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю (в системах, где an = 0), а остальные левые, то система находится на границе апериодической устойчивости. Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости.

Правила, позволяющие судить о знаках корней характеристического уравнения без его решения, называются критериями устойчивости. Их можно разделить на алгебраические (основаны на составлении по данному характеристическому уравнению по определенным правилам алгебраических выражений, по которым можно судить об устойчивости САУ) и частотные (основаны на исследовании частотных характеристик).


 

А также другие работы, которые могут Вас заинтересовать

16717. Planned economy 41.9 KB
  Planned economy This article is about an economic system controlled or directed by the state. For proposed economic systems that employs participatory or democratic planning Planned economy or command economy is an economic system in which the state directs the economy.[1] It is an economic system in which the central government controls industry such that it makes major decisions...
16718. ДОБЫЧА ЗОЛОТА МЕТОДАМИ ГЕОТЕХНОЛОГИИ 109.5 KB
  Геотехнология определяется как метод добычи цветных, редких и благородных металлов путем их избирательного растворения химическими реагентами на месте залегания и последующего извлечения образованных в зоне реакций
16719. Бактериальное выщелачивание 40 KB
  Бактериальное выщелачивание избирательное извлечение химических элементов из многокомпонентных соединений посредством их растворения микроорганизмами в водной среде. Благодаря Б. в. появляется возможность извлекать из руд отходов производства и т. д. ценные...
16720. Влияние вторичных процессов на извлечение золота при сорбционном выщелачивании 53.5 KB
  УДК.669.21/23 Влияние вторичных процессов на извлечение золота при сорбционном выщелачиванииКустова Л.А. начальник ЦЗЛ ГМЗ2 Центрального рудоуправления НГМК; Коротовских Г.А. зам. начальника ЦЗЛ ГМЗ2 Центрального рудоуправления НГМК Золотосодержащие руды отличаются бо...
16721. Влияние концентрации цианистого натрия и тонины помола на извлечение золота и серебра из пульпы 65.5 KB
  УДК 622 Влияние концентрации цианистого натрия и тонины помола на извлечение золота и серебра из пульпыДубов А.А. начальник цеха сорбции и регенерации ГМЗ2 Центрального рудоуправления НГМК С момента пуска Гидрометаллургического завода № 2 НГМК в эксплуатацию на нем с
16722. ВОЗМОЖНОСТИ ГРАВИТАЦИОННОГО ОБОГАЩЕНИЯ УПОРНЫХ ПРОМПРОДУКТОВ ЗОЛОТОИЗВЛЕКАТЕЛЬНЫХ ФАБРИК 84.5 KB
  ВОЗМОЖНОСТИ ГРАВИТАЦИОННОГО ОБОГАЩЕНИЯ УПОРНЫХ ПРОМПРОДУКТОВ ЗОЛОТОИЗВЛЕКАТЕЛЬНЫХ ФАБРИК Евтушенко М.Б. ОOО НТЦ Магнитные жидкости Посысоева Д.С. МГГУ Упорными промпродуктами золотоизвлекательных фабрик ЗИФ являются хвосты доводки гравиоконцентратов пред...
16723. ВОЗМОЖНОСТИ И ПЕРСПЕКТИВЫ ПРОМЫШЛЕННОГО ИСПОЛЬ-ЗОВАНИЯ НЕЦИАНИСТЫХ РАСТВОРИТЕЛЕЙ ЗОЛОТА И СЕРЕБРА 93.5 KB
  ВОЗМОЖНОСТИ И ПЕРСПЕКТИВЫ ПРОМЫШЛЕННОГО ИСПОЛЬЗОВАНИЯ НЕЦИАНИСТЫХ РАСТВОРИТЕЛЕЙ ЗОЛОТА И СЕРЕБРА Современная металлургия золота основана на использовании цианистого процесса который успешно применяется в мировой практике уже более 115 лет обеспечивая получен...
16724. Выбор рационального расхода рабочих растворов при кучном выщелачивании золота 70 KB
  Выбор рационального расхода рабочих растворов при кучном выщелачивании золота Д. Е. Толстов Г. 2000 г. УДК 669.213:66.094.6 Штабели укладываемой руды при кучном выщелачивании золота могут достигать сотни метров в высоту более двух километров в длину и километр в ширину. Разли
16725. ВЫЩЕЛАЧИВАНИЕ ЗОЛОТА С ПОМОЩЬЮ АЗОТ- И СЕРОСОДЕРЖАЩИХ ГЕТЕРОЦИКЛИЧЕСКИХ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ 258.5 KB
  ВЫЩЕЛАЧИВАНИЕ ЗОЛОТА С ПОМОЩЬЮ АЗОТ И СЕРОСОДЕРЖАЩИХ ГЕТЕРОЦИКЛИЧЕСКИХ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ Имя изобретателя: Кристьянсдоттир Сиграйдью Соул US; Томпсон Джеффри Скотт US Имя патентообладателя: Е.И.Дю Пон Де Немурс энд Компани USАдрес для переписки: Дата начала ...