45455

Устойчивость систем управления

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

В соответствии с классическим методом решение дифференциального уравнения ищется в виде: yt = yвынt yсвt. Здесь yсвt общее решение однородного дифференциального уравнения то есть уравнения с нулевой правой частью: oyn 1yn1 . Поэтому решение данного уравнения называется свободной составляющей общего решения. yвынt частное решение неоднородного дифференциального уравнения под которым понимается уравнение с ненулевой правой частью.

Русский

2013-11-17

57.5 KB

0 чел.

  1.  Устойчивость систем управления.

Понятие устойчивости системы

  

Под устойчивостью системы понимается способность ее возвращаться к состоянию установившегося равновесия после снятия возмущения, нарушившего это равновесие. Неустойчивая система непрерывно удаляется от равновесного состояния или совершает вокруг него колебания с возрастающей амплитудой.

Устойчивость линейной системы определяется не характером возмущения, а структурой самой системы (рис.61). Говорят, что система устойчива "в малом", если определен факт наличия устойчивости, но не определены ее границы. Система устойчива "в большом", когда определены границы устойчивости и то, что реальные отклонения не выходят за эти границы.

В соответствии с классическим методом решение дифференциального уравнения ищется в виде:

 

y(t) = yвын(t) + yсв(t).

 

Здесь yсв(t) - общее решение однородного дифференциального уравнения, то есть уравнения с нулевой правой частью:

 

aoy(n) + a1y(n-1) + ... + a(n-1)y’ + a(n)y = 0.

 

Физически это означает, что все внешние воздействия сняты и система абсолютно свободна, ее движения определяются лишь собственной структурой. Поэтому решение данного уравнения называется свободной составляющей общего решения. yвын(t) - частное решение неоднородного дифференциального уравнения, под которым понимается уравнение с ненулевой правой частью. Физически это означает, что к системе приложено внешнее воздействие u(t). Поэтому вторая составляющая общего решения называется вынужденный. Она определяет вынужденный установившийся режим работы системы после окончания переходного процесса.

Можно провести аналогию между САУ и пружиной, колебания которой описываются аналогичным дифференциальным

уравнением (рис.62). Оттянем пружину, а затем отпустим, предоставив ее самой себе. Пружина будет колебаться в соответствии со свободной составляющей решения уравнения, то есть характер колебаний будет определяться только структурой самой пружины. Если в момент времени t = 0 подвесить к пружине груз, то на свободные колебания наложится внешняя сила Р. После затухания колебаний, описываемых только свободной составляющей общего решения, система перейдет в новый установившийся режим, характеризуемый вынужденной составляющей yвын = y(t ). Если внешнее воздействие само будет изменяться по синусоидальному закону P = Posin(t + ), то после затухания переходного процесса система будет совершать вынужденные колебания с той же частотой, что и вынуждающая сила, то есть yвын = ymaxsin(t + y).

Каждая составляющая общего решения уравнения динамики ищется отдельно. Вынужденная составляющая ищется на основе решения уравнения статики для данной системы для времени t . Свободная составляющая представляет собой сумму из n отдельных составляющих: , где pi корни характеристического уравнения D(p) = a0pn + a1pn-1 + a2pn-2 + ... + an = 0. Корни могут быть либо вещественными pi = ai, либо попарно комплексно сопряженными pi = ai ± ji. Постоянные интегрирования Аi определяются исходя из начальных и конечных условий, подставляя в общее решение значения u, y и их производные в моменты времени t = 0 и t .

Каждому отрицательному вещественному корню соответствует экспоненциально затухающая во времени составляющая yсв(t)i, каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует yсв(t)i = const (рис.63). Пара комплексно сопряженных корней с отрицательной вещественной частью определяет затухающие колебания с частотой i, при положительной вещественной части - расходящиеся колебания, при нулевой - незатухающие (рис.64).

 

 

Так как после снятия возмущения yвын(t) = 0, то устойчивость системы определяется только характером свободной составляющей yсв(t). zПоэтому условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанному в отклонениях, должна стремиться к нулю, то есть затухать.

Исходя из расположения на комплексной плоскости корни с отрицательными вещественными частями называются левыми, с положительными - правыми (рис.65).

Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю (в системах, где an = 0), а остальные левые, то система находится на границе апериодической устойчивости. Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости.

Правила, позволяющие судить о знаках корней характеристического уравнения без его решения, называются критериями устойчивости. Их можно разделить на алгебраические (основаны на составлении по данному характеристическому уравнению по определенным правилам алгебраических выражений, по которым можно судить об устойчивости САУ) и частотные (основаны на исследовании частотных характеристик).


 

А также другие работы, которые могут Вас заинтересовать

15109. Шәкәрім қажы мен голландық Альвин Бимбоэс 50 KB
  Шәкәрім қажы мен голландық Альвин Бимбоэс ...Жауыннан соң байтақ даладан жамырай бері жүгіретін сансыз жылғалар Есіл өзенін жаз бойы әлдерінше молықтырып жатады. Ақмоланың көшелерінен көтерілетін шаңнан тұншыққан жұрттың еркін тыныстайтын жері де осы маң. Үнемі үс
15110. Шәкәрім Құдайбердиевтің Ләйлі-Мәжнүн дастаны 48.5 KB
  ӘОЖ 577.4 Ш. ҚҰДАЙБЕРДИЕВТІҢ ЛӘЙЛІМӘЖНҮН ДАСТАНЫ НӘЗИРА ҮЛГІСІНДЕ ЖАЗЫЛҒАН ТӨЛ ШЫҒАРМАСЫ Г.С.Тәженова М.И. Ревшенова Тараз мемлекеттік педагогикалық институтыТараз қ. ХХ ғасырдың басындағы көркем аударма саласына көп еңбегі сіңген ақын жазуш
15111. Шәкәрім поэтикасы 291.5 KB
  Бүгінгідей түрлі мәдениеттер тоғысындағы жаһандану үрдісіне бағыт бұрған заманда ұлтымыздың рухани өресін биіктеткен тұлғалардың қалдырған мұрасына қайта үңілу оның тағылымдық мәнін қайта зерделеу
15112. Шәкәрімнің лирикасы 41.5 KB
  ШӘКӘРІМ ЛИРИКАСЫ АМАНГЕЛДІ БАЯН САҒЫНТАЙҚЫЗЫ №35 ЖОББМ 8сынып оқушысы Павлодар қ. Күні бүгінге дейін қазақ лирикасының тарихы мен жанрлық табиғаты турасында сөз қозғағанда қазақ лирикасын қалыптастырушылардың бірі рет
15113. Шыңғыс Айтматов 41 KB
  ТАНЫМНЫҢ ТАРЛАНБОЗЫ Тарихи танымы мен рухани дамуы есте жоқ ескі замандардан бермен қарай сабақтасып жататын қазаққырғыз ұлыстарының ұлағат биігінен орын алған ортақ мұралары туралы сөз болғанда ойға оралатын құндылықтар шоғыры адамзат өркениетінің өзекті б...
15114. Мағжан Жұмабаев (1893-1938) 25.5 KB
  Мағжан Жұмабаев 1893-1938 Мағжан қазақ поэзиясының шолпан жұлдыздарының бірі әрі бірегейі.Ол артына өшпес рухани мол мұраөзіне өлмес мәңгілік ескерткіш қалдырып кеткен. Жарты ғасырдан аса оның есімін дешығармаларын да атай алмай келген халқы көп жылдардан кейін ғана ...
15115. Мақатаев Мұқағали (Мұқаметқали) Сүлейменұлы 124.5 KB
  Мақатаев Мұқағали Мұқаметқали Сүлейменұлы 1931 жылғы Алматы облысы Райымбек ауданы Қарасаз аулы 27.3.1976ж.Алматы қаласыақын. Балалық шағы сұрапыл соғыс жылдарына тұстас келді. Ол XX ғасырдың екінші жартысындағы қазақ поэзиясының дамуына үлкен үлес қосқан ақиық ақы
15116. Сейфуллин, Сәкен (Садуақас, 1894-1938) 134 KB
  Сейфуллин Сәкен Садуақас 18941938 қазақтың көрнекті жазушысы қазақ әдебиетін қалыптастырушылардың бірі мемлекет және қоғам қайраткері. Туып өскен жері Қарағанды облысының Шет ауданына бұрынғы Жаңаарқа ауданына қарасты Ортау кеңшарының Қарашілік қыстағы. Саяси реп...
15117. ЖАМБЫЛ ЖАБАЕВ 83.5 KB
  ЖАМБЫЛ ЖАБАЕВ 1846 1945 АҚЫН ӨМІРІ Шу өзенінің бойымен жүре берсеңіз Хан және Жамбыл деген екі тауға кез боласыз. Менің әкем Жабай бір кезде осы тауларда көшіпқонып жүрген. Жамбыл тауының етегінде қақаған қатты боранды күні мен туыппын Маған сол көне Жамбыл тауының е