45455

Устойчивость систем управления

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

В соответствии с классическим методом решение дифференциального уравнения ищется в виде: yt = yвынt yсвt. Здесь yсвt общее решение однородного дифференциального уравнения то есть уравнения с нулевой правой частью: oyn 1yn1 . Поэтому решение данного уравнения называется свободной составляющей общего решения. yвынt частное решение неоднородного дифференциального уравнения под которым понимается уравнение с ненулевой правой частью.

Русский

2013-11-17

57.5 KB

0 чел.

  1.  Устойчивость систем управления.

Понятие устойчивости системы

  

Под устойчивостью системы понимается способность ее возвращаться к состоянию установившегося равновесия после снятия возмущения, нарушившего это равновесие. Неустойчивая система непрерывно удаляется от равновесного состояния или совершает вокруг него колебания с возрастающей амплитудой.

Устойчивость линейной системы определяется не характером возмущения, а структурой самой системы (рис.61). Говорят, что система устойчива "в малом", если определен факт наличия устойчивости, но не определены ее границы. Система устойчива "в большом", когда определены границы устойчивости и то, что реальные отклонения не выходят за эти границы.

В соответствии с классическим методом решение дифференциального уравнения ищется в виде:

 

y(t) = yвын(t) + yсв(t).

 

Здесь yсв(t) - общее решение однородного дифференциального уравнения, то есть уравнения с нулевой правой частью:

 

aoy(n) + a1y(n-1) + ... + a(n-1)y’ + a(n)y = 0.

 

Физически это означает, что все внешние воздействия сняты и система абсолютно свободна, ее движения определяются лишь собственной структурой. Поэтому решение данного уравнения называется свободной составляющей общего решения. yвын(t) - частное решение неоднородного дифференциального уравнения, под которым понимается уравнение с ненулевой правой частью. Физически это означает, что к системе приложено внешнее воздействие u(t). Поэтому вторая составляющая общего решения называется вынужденный. Она определяет вынужденный установившийся режим работы системы после окончания переходного процесса.

Можно провести аналогию между САУ и пружиной, колебания которой описываются аналогичным дифференциальным

уравнением (рис.62). Оттянем пружину, а затем отпустим, предоставив ее самой себе. Пружина будет колебаться в соответствии со свободной составляющей решения уравнения, то есть характер колебаний будет определяться только структурой самой пружины. Если в момент времени t = 0 подвесить к пружине груз, то на свободные колебания наложится внешняя сила Р. После затухания колебаний, описываемых только свободной составляющей общего решения, система перейдет в новый установившийся режим, характеризуемый вынужденной составляющей yвын = y(t ). Если внешнее воздействие само будет изменяться по синусоидальному закону P = Posin(t + ), то после затухания переходного процесса система будет совершать вынужденные колебания с той же частотой, что и вынуждающая сила, то есть yвын = ymaxsin(t + y).

Каждая составляющая общего решения уравнения динамики ищется отдельно. Вынужденная составляющая ищется на основе решения уравнения статики для данной системы для времени t . Свободная составляющая представляет собой сумму из n отдельных составляющих: , где pi корни характеристического уравнения D(p) = a0pn + a1pn-1 + a2pn-2 + ... + an = 0. Корни могут быть либо вещественными pi = ai, либо попарно комплексно сопряженными pi = ai ± ji. Постоянные интегрирования Аi определяются исходя из начальных и конечных условий, подставляя в общее решение значения u, y и их производные в моменты времени t = 0 и t .

Каждому отрицательному вещественному корню соответствует экспоненциально затухающая во времени составляющая yсв(t)i, каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует yсв(t)i = const (рис.63). Пара комплексно сопряженных корней с отрицательной вещественной частью определяет затухающие колебания с частотой i, при положительной вещественной части - расходящиеся колебания, при нулевой - незатухающие (рис.64).

 

 

Так как после снятия возмущения yвын(t) = 0, то устойчивость системы определяется только характером свободной составляющей yсв(t). zПоэтому условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанному в отклонениях, должна стремиться к нулю, то есть затухать.

Исходя из расположения на комплексной плоскости корни с отрицательными вещественными частями называются левыми, с положительными - правыми (рис.65).

Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю (в системах, где an = 0), а остальные левые, то система находится на границе апериодической устойчивости. Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости.

Правила, позволяющие судить о знаках корней характеристического уравнения без его решения, называются критериями устойчивости. Их можно разделить на алгебраические (основаны на составлении по данному характеристическому уравнению по определенным правилам алгебраических выражений, по которым можно судить об устойчивости САУ) и частотные (основаны на исследовании частотных характеристик).


 

А также другие работы, которые могут Вас заинтересовать

57484. Сценарій літературного вечора «З Україною в серці» 1.31 MB
  Ведучі. Петриненко Ведучі. Україна Ти для мене диво І нехай пішов за роками рік буду завжди я горда і вродлива з тебе дивуватися навік На екрані карта України Ведучі. Ведучі.
57485. Welcome to Ukraine 55 KB
  The aims: Practical aims: to teach the new vocabulary, by the end of the lesson pupils will have revised the information they have learned about Ukraine, will have recollected some facts about our country by doing different tasks...
57486. Ukraine is our native country 73.5 KB
  The aims: to repeat the learnt vocabulary; to revise the information pupils have learnt about Ukraine; to recollect some facts about our country by doing different tasks: making up sentences and monologues, writing pass-letters;
57487. Кількість, густота, природний рух населення України 99 KB
  Після цього уроку учні зможуть: ознайомитись з кількістю населення України і її зміною в часі; давати визначення поняттям природний приріст міграція розкривати вплив природних історичних умов на розміщення населення на території України...
57489. Ukraine and Great Britain 1.86 MB
  Today we have unusual lesson. It’s a Presentation Lesson and its topic is “Differences and Similarities of Ukraine and Great Britain”. The aim of our lesson is to improve our knowledge, to learn more and broaden our outlook, to watch presentations, to play games.
57490. Welcome to Ukraine! 169.5 KB
  Today we have an unusual lesson. We are going to prepare for journey around Ukraine. We’ll travel next time. We’ll go by bus. But first of all we need tickets. You shouldn’t pay money for these tickets. You should answer some my questions to get a ticket. Let’s start.
57491. Послевоенное восстановление и развитие Украины (1945 - начало 1953 года). Голод 1946-1947 гг 65.5 KB
  Давайте мы пополним этот коллаж нарисовав свой символ голодоморов. Приложение №1 Документ №1 29 августа 1946 года былю официально объявлено что в связи с засухой в ряде областей СССР и сокращением государственных...
57492. ОПЫТНО-ЭКСПЕРИМЕНТАЛЬНАЯ РАБОТА ПО ФОРМИРОВАНИЮ НАВЫКОВ ПОСТРОЕНИЯ КОМПОЗИЦИИ В РИСУНКЕ У МЛАДШИХ ШКОЛЬНИКОВ СРЕДСТВАМИ ИЗОБРАЗИТЕЛЬНОГО ИСКУССТВА 166.82 KB
  Изобразительное искусство является художественным отражением действительности в зрительно воспринимаемых образах. Средствами цвета, пластики или рисунка художник создает на холсте, в глине или мраморе картины окружающей жизни, сильные и прекрасные образы человека.