45455

Устойчивость систем управления

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

В соответствии с классическим методом решение дифференциального уравнения ищется в виде: yt = yвынt yсвt. Здесь yсвt общее решение однородного дифференциального уравнения то есть уравнения с нулевой правой частью: oyn 1yn1 . Поэтому решение данного уравнения называется свободной составляющей общего решения. yвынt частное решение неоднородного дифференциального уравнения под которым понимается уравнение с ненулевой правой частью.

Русский

2013-11-17

57.5 KB

0 чел.

  1.  Устойчивость систем управления.

Понятие устойчивости системы

  

Под устойчивостью системы понимается способность ее возвращаться к состоянию установившегося равновесия после снятия возмущения, нарушившего это равновесие. Неустойчивая система непрерывно удаляется от равновесного состояния или совершает вокруг него колебания с возрастающей амплитудой.

Устойчивость линейной системы определяется не характером возмущения, а структурой самой системы (рис.61). Говорят, что система устойчива "в малом", если определен факт наличия устойчивости, но не определены ее границы. Система устойчива "в большом", когда определены границы устойчивости и то, что реальные отклонения не выходят за эти границы.

В соответствии с классическим методом решение дифференциального уравнения ищется в виде:

 

y(t) = yвын(t) + yсв(t).

 

Здесь yсв(t) - общее решение однородного дифференциального уравнения, то есть уравнения с нулевой правой частью:

 

aoy(n) + a1y(n-1) + ... + a(n-1)y’ + a(n)y = 0.

 

Физически это означает, что все внешние воздействия сняты и система абсолютно свободна, ее движения определяются лишь собственной структурой. Поэтому решение данного уравнения называется свободной составляющей общего решения. yвын(t) - частное решение неоднородного дифференциального уравнения, под которым понимается уравнение с ненулевой правой частью. Физически это означает, что к системе приложено внешнее воздействие u(t). Поэтому вторая составляющая общего решения называется вынужденный. Она определяет вынужденный установившийся режим работы системы после окончания переходного процесса.

Можно провести аналогию между САУ и пружиной, колебания которой описываются аналогичным дифференциальным

уравнением (рис.62). Оттянем пружину, а затем отпустим, предоставив ее самой себе. Пружина будет колебаться в соответствии со свободной составляющей решения уравнения, то есть характер колебаний будет определяться только структурой самой пружины. Если в момент времени t = 0 подвесить к пружине груз, то на свободные колебания наложится внешняя сила Р. После затухания колебаний, описываемых только свободной составляющей общего решения, система перейдет в новый установившийся режим, характеризуемый вынужденной составляющей yвын = y(t ). Если внешнее воздействие само будет изменяться по синусоидальному закону P = Posin(t + ), то после затухания переходного процесса система будет совершать вынужденные колебания с той же частотой, что и вынуждающая сила, то есть yвын = ymaxsin(t + y).

Каждая составляющая общего решения уравнения динамики ищется отдельно. Вынужденная составляющая ищется на основе решения уравнения статики для данной системы для времени t . Свободная составляющая представляет собой сумму из n отдельных составляющих: , где pi корни характеристического уравнения D(p) = a0pn + a1pn-1 + a2pn-2 + ... + an = 0. Корни могут быть либо вещественными pi = ai, либо попарно комплексно сопряженными pi = ai ± ji. Постоянные интегрирования Аi определяются исходя из начальных и конечных условий, подставляя в общее решение значения u, y и их производные в моменты времени t = 0 и t .

Каждому отрицательному вещественному корню соответствует экспоненциально затухающая во времени составляющая yсв(t)i, каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует yсв(t)i = const (рис.63). Пара комплексно сопряженных корней с отрицательной вещественной частью определяет затухающие колебания с частотой i, при положительной вещественной части - расходящиеся колебания, при нулевой - незатухающие (рис.64).

 

 

Так как после снятия возмущения yвын(t) = 0, то устойчивость системы определяется только характером свободной составляющей yсв(t). zПоэтому условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанному в отклонениях, должна стремиться к нулю, то есть затухать.

Исходя из расположения на комплексной плоскости корни с отрицательными вещественными частями называются левыми, с положительными - правыми (рис.65).

Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю (в системах, где an = 0), а остальные левые, то система находится на границе апериодической устойчивости. Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости.

Правила, позволяющие судить о знаках корней характеристического уравнения без его решения, называются критериями устойчивости. Их можно разделить на алгебраические (основаны на составлении по данному характеристическому уравнению по определенным правилам алгебраических выражений, по которым можно судить об устойчивости САУ) и частотные (основаны на исследовании частотных характеристик).


 

А также другие работы, которые могут Вас заинтересовать

21048. Патофизиология экстремальных состояний 23 KB
  Рассмотреть вопросы этиологии патогенеза и патогенетической терапии шока коллапса комы и обморока. Определение виды патогенез принципы патогенетической терапии шока. Характеристика шока. Классификация шока.
21049. Общий адаптационный синдром (стресс) 17 KB
  Дать патофизиологическую оценку стадиям стресса. Определение стресса виды стресса. Патофизиологическая характеристика Дистресса. Впервые описал оси стресса и дал их патофизиологическую оценку.
21050. Предмет, методы и задачи патологической физиологии. История патологической физиологии. Общая нозология 31 KB
  Характеристика этиологии патогенеза цепи патогенеза определение понятий здоровье и болезнь. В его основе лежит цепь патогенеза. Цепь патогенеза: стержневой механизм формирования болезни. Следующие друг за другом важнейшие факторы патогенеза связанные между собой причинноследственными взаимоотношениями.
21051. Повреждающее действие на клетки фактороввнешней среды. Перекисное окисление липидов (ПОЛ) 50 KB
  Перекисное окисление липидов ПОЛ. ЦЕЛЬ ЛЕКЦИИ: Изучить механизмы ПОЛ и их роль в повреждении клеток. Общая характеристика ПОЛ. Механизмы ПОЛ.
21052. Патофизиология лихорадки и гипертермии 35.5 KB
  ЦЕЛЬ ЛЕКЦИИ: Изучить вопросы этиологии патогенеза и патогенетической терапии лихорадки и гипертермии. Характеристика лихорадки и гипертермии как типовых патологических процессов. Этиология и патогенез лихорадки типы температурных кривых.
21053. Патофизиологическая характеристика воспаления 28.5 KB
  Определение и классификация воспаления. Характеристика методов воспаления. Мечникова в изучение воспаления. Значение воспаления для организма.
21054. Резистентность и реактивность. Неспецифические факторы защиты организма 36.5 KB
  Реактивность это способность организма отвечать изменениями жизнедеятельности на факторы внешней и внутренней среды как в условиях нормы так и в условиях патологии. Реактивность определяет состояние резистентности. Высокая реактивность определяет низкую резистентность.
21055. Патологическая физиология аллергических реакций 36 KB
  Скорость накожной реакции после внутрикожного введения аллергена больному аллергией: а немедленного типа ГНТ волдырь. б замедленного типа ГЗТ 4872 часа инфильтрат. По локализации субстрата с которым можно перенести аллергию от больного к здоровому: а ГНТ гуморальный тип. б ГЗТ клеточный тип.
21056. Патофизиология опухолевого роста 21 KB
  Цель лекции: Рассмотреть современное состояние вопроса этиологии и патогенеза злокачественных опухолей. План лекции: Определение опухолей современные представления об этиологии и патогенезе опухолей отличие доброкачественных и злокачественных опухолей. Анаплазия это изменение структуры и биологических свойств опухолей делающих их похожими на недифференцированные ткани. Этиология опухолей факторы вызывающие развитие опухолей называются канцерогенными или бластогенными.