45458

Системы управления при случайных воздействиях. Преобразование стационарного случайного сигнала стационарной линейной динамической системой

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Системы управления при случайных воздействиях. Если задающее воздействие gt является случайным процессом то выходная координата системы yt и ошибка воспроизведения xt = gt yt представляют собой также случайные процессы. Следовательно при случайных воздействиях речь может идти об определении не мгновенных а лишь некоторых средних значений выходной переменной системы и ошибки. Такими средними значениями являются среднее значение квадрата выходной переменной системы 9.

Русский

2013-11-17

265.5 KB

5 чел.

4. Системы управления при случайных воздействиях. Преобразование стационарного случайного сигнала стационарной линейной динамической системой.

9.3. Оценка работы линейных автоматических систем при случайных стационарных воздействиях

Оценить работу автоматических систем при сигналах внешних воздействий в виде стационарных случайных процессов можно с помощью корреляционных функций и спектральных плотностей.

Если задающее воздействие g(t) является случайным процессом, то выходная координата системы y(t) и ошибка воспроизведения x(t) = g(t) - y(t) представляют собой также случайные процессы.

Следовательно, при случайных воздействиях речь может идти об определении не мгновенных, а лишь некоторых средних значений выходной переменной системы и ошибки.

Такими средними значениями являются среднее значение квадрата выходной переменной системы

(9.20)

и квадрата ошибки

(9.21)

Эти величины можно найти через их корреляционные функции и спектральные плотности

163

(9.22)

(9.23)

Следовательно, для исследования статистической точности автоматических систем необходимо вычисление корреляционных функций Rу(τ), Κx(τ) и спектральных плотностей Sу(ω), Sx(ω) переменной на выходе системы у и ошибки x по известной корреляционной функции Rg(τ) и спектральной плотности Sg(ω) случайного входного воздействия.

Для установления взаимосвязи между корреляционными функциями переменных входа и выхода системы, а также взаимосвязи между их спектральными плотностями используется известное интегральное уравнение (интеграл Дюамеля), на основании которого

(9.24)

где wy(t) - весовая или импульсная функция замкнутой системы по задающему воздействию g(t);

λ - вспомогательное время интегрирования.

Тогда корреляционная функция выходной величины

Ry(r) = y(t) · y(t + τ),

(9.25)

а спектральная плотность, определяемая как прямое преобразование Фурье от корреляционной функции, имеет вид

Sy(ω) = F[Ry(τ)].

(9.26)

Выполнив необходимые преобразования получаем [1]

Sy(ω) = | Фg(jω) |2 · Sg(ω),

(9.27)

164

где Фg(jω) - частотная передаточная функция замкнутой системы по задающему воздействию.

Таким образом, спектральная плотность выходной координаты системы может быть получена умножением спектральной плотности входной величины на квадрат модуля частотной передаточной функции замкнутой системы до задающему воздействию.

Аналогично получается выражение для спектральной плотности ошибки

Sx(ω) = F[Rx(τ)] = | Фxg(jω) |2 · Sg(ω)

(9.28)

где Фxg(jω) - частотная передаточная функция замкнутой системы по ошибке относительно задающего воздействия.

Выражения (9.27) и (9.28) устанавливают связь между спектральными плотностями Sy(ω), Sx(ω) переменной на выходе системы у и ошибки x со спектральной плотности Sg(ω) случайного входного воздействия.

Тогда средние значения квадрата выходной величины системы и ошибки определяются как

(9.29)

(9.30)

При действии на систему независимых друг от друга задающего и возмущающего воздействий g(t) и f(t) спектральная плотность ошибки системы будет

Sx(ω) = |Фxg(jω)|2 Sg(ω) + |Фxf(jω)|2 Sf(ω),

(9.31)

где Φxf(jω) - частотная передаточная функция замкнутой системы относительно точек входа помехи f(t) и ошибки x(t);

Sf(ω) - спектральная плотность сигнала помехи f(t).

165

Суммарная ошибка системы в этом случае будет характеризоваться выражением

x

2

Σ

= x

2

g

+ x

2

f

.

(9.32)

Таким образом оценивается работа линейных автоматических систем при случайных стационарных воздействиях.

Пример. Передаточная функция разомкнутой системы автоматического управления имеет вид

W(s) =

k

s(T1s + 1)(T2s + 1)

 ,

где k - общий коэффициент передачи разомкнутой цепи;
Т
1 и Т2 - постоянные времени.

На входе системы действует полезный регулярный сигнал m(t) = m1 · t и помеха n(t), представляющая собой белый шум со спектральной плотностью Sn(ω) = c2 = const.

Оценить ошибку системы.

Решение. Установившееся значение ошибки от полезного сигнала

Средний квадрат случайной ошибки, вызванной помехой на входе, равен среднему квадрату выходной величины системы от помехи и определяется

Из полученных выражений следует, что увеличение общего коэффициента передачи разомкнутой цепи системы k с одной стороны ведет к уменьшению установившегося значения ошибки системы от

166

полезного сигнала, однако, с другой стороны для уменьшения среднего квадрата случайной ошибки, вызванной помехой на входе, необходимо, чтобы значение общего коэффициента передачи разомкнутой цепи системы k было минимально.

Оптимальное значение общего коэффициента передачи системы делается путем минимизации среднего квадрата суммарной ошибки


 

А также другие работы, которые могут Вас заинтересовать

73536. НЕЛИНЕЙНЫЕ ЦЕПИ И АППРОКСИМАЦИЯ ХАРАКТЕРИСТИК НЕЛИНЕЙНЫХ ЭЛЕМЕНТОВ 183 KB
  Приведена ВАХ типового нелинейного элемента полупроводникового диода. Для резистивных нелинейных элементов важным параметром является их сопротивление которое в отличие от линейных резисторов не является постоянным а зависит от того в какой точке ВАХ оно определяется.
73537. ВОЗДЕЙСТВИЕ ГАРМОНИЧЕСКОГО КОЛЕБАНИЯ НА ЦЕПЬ С НЕЛИНЕЙНЫМ ЭЛЕМЕНТОМ 371.5 KB
  На этом же рисунке показана форма тока в цепи с нелинейным элементом it. Из-за нелинейности вольт-амперной характеристики формы напряжения и тока оказываются различными. Воздействие гармонического сигнала на нелинейный элемент спектра тока...
73539. Заряд внутри диэлектрика, Теорема Гаусса для вектора напряжённости в диэлектрике 146.5 KB
  Выберем на этой поверхности некоторую площадку, малую настолько, что её можно считать частью плоскости и поле на ней можно считать однородным. Построим цилиндр, проходящий через эту площадку с направляющими параллельно вектору напряжённости внешнего поля.
73540. ЭЛЕКТРИЧЕСКИЕ ФИЛЬТРЫ 168.5 KB
  Фильтры применяются для выделения или подавления определенных колебаний разделения частотных каналов формирования спектра сигналов. По расположению на шкале частот полосы пропускания различают следующие фильтры: а нижних частот...
73541. Параллельный колебательный контур и резонанс токов 193.5 KB
  Параллельный колебательный контур с потерями и векторные диаграммы Комплексная входная проводимость такого контура: комплексные проводимости ветвей с индуктивностью и емкостью соответственно...