45459

Основные задачи анализа систем с минимальной средней квадратичной ошибкой: задача фильтрации, задача экстраполяции, задача дифференцирования и др

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Если задающее воздействие gt является случайным процессом то выходная координата системы yt и ошибка воспроизведения xt = gt yt представляют собой также случайные процессы. Следовательно при случайных воздействиях речь может идти об определении не мгновенных а лишь некоторых средних значений выходной переменной системы и ошибки. Такими средними значениями являются среднее значение квадрата выходной переменной системы 9.23 Следовательно для исследования статистической точности автоматических систем необходимо вычисление...

Русский

2013-11-17

265.5 KB

0 чел.

5. Основные задачи анализа систем с минимальной средней квадратичной ошибкой: задача фильтрации, задача экстраполяции, задача дифференцирования и др.

Оценка работы линейных автоматических систем при случайных стационарных воздействиях

Оценить работу автоматических систем при сигналах внешних воздействий в виде стационарных случайных процессов можно с помощью корреляционных функций и спектральных плотностей.

Если задающее воздействие g(t) является случайным процессом, то выходная координата системы y(t) и ошибка воспроизведения x(t) = g(t) - y(t) представляют собой также случайные процессы.

Следовательно, при случайных воздействиях речь может идти об определении не мгновенных, а лишь некоторых средних значений выходной переменной системы и ошибки.

Такими средними значениями являются среднее значение квадрата выходной переменной системы

(9.20)

и квадрата ошибки

(9.21)

Эти величины можно найти через их корреляционные функции и спектральные плотности

163

(9.22)

(9.23)

Следовательно, для исследования статистической точности автоматических систем необходимо вычисление корреляционных функций Rу(τ), Κx(τ) и спектральных плотностей Sу(ω), Sx(ω) переменной на выходе системы у и ошибки x по известной корреляционной функции Rg(τ) и спектральной плотности Sg(ω) случайного входного воздействия.

Для установления взаимосвязи между корреляционными функциями переменных входа и выхода системы, а также взаимосвязи между их спектральными плотностями используется известное интегральное уравнение (интеграл Дюамеля), на основании которого

(9.24)

где wy(t) - весовая или импульсная функция замкнутой системы по задающему воздействию g(t);

λ - вспомогательное время интегрирования.

Тогда корреляционная функция выходной величины

Ry(r) = y(t) · y(t + τ),

(9.25)

а спектральная плотность, определяемая как прямое преобразование Фурье от корреляционной функции, имеет вид

Sy(ω) = F[Ry(τ)].

(9.26)

Выполнив необходимые преобразования получаем [1]

Sy(ω) = | Фg(jω) |2 · Sg(ω),

(9.27)

164

где Фg(jω) - частотная передаточная функция замкнутой системы по задающему воздействию.

Таким образом, спектральная плотность выходной координаты системы может быть получена умножением спектральной плотности входной величины на квадрат модуля частотной передаточной функции замкнутой системы до задающему воздействию.

Аналогично получается выражение для спектральной плотности ошибки

Sx(ω) = F[Rx(τ)] = | Фxg(jω) |2 · Sg(ω)

(9.28)

где Фxg(jω) - частотная передаточная функция замкнутой системы по ошибке относительно задающего воздействия.

Выражения (9.27) и (9.28) устанавливают связь между спектральными плотностями Sy(ω), Sx(ω) переменной на выходе системы у и ошибки x со спектральной плотности Sg(ω) случайного входного воздействия.

Тогда средние значения квадрата выходной величины системы и ошибки определяются как

(9.29)

(9.30)

При действии на систему независимых друг от друга задающего и возмущающего воздействий g(t) и f(t) спектральная плотность ошибки системы будет

Sx(ω) = |Фxg(jω)|2 Sg(ω) + |Фxf(jω)|2 Sf(ω),

(9.31)

где Φxf(jω) - частотная передаточная функция замкнутой системы относительно точек входа помехи f(t) и ошибки x(t);

Sf(ω) - спектральная плотность сигнала помехи f(t).

165

Суммарная ошибка системы в этом случае будет характеризоваться выражением

x

2

Σ

= x

2

g

+ x

2

f

.

(9.32)

Таким образом оценивается работа линейных автоматических систем при случайных стационарных воздействиях.

Пример. Передаточная функция разомкнутой системы автоматического управления имеет вид

W(s) =

k

s(T1s + 1)(T2s + 1)

 ,

где k - общий коэффициент передачи разомкнутой цепи;
Т
1 и Т2 - постоянные времени.

На входе системы действует полезный регулярный сигнал m(t) = m1 · t и помеха n(t), представляющая собой белый шум со спектральной плотностью Sn(ω) = c2 = const.

Оценить ошибку системы.

Решение. Установившееся значение ошибки от полезного сигнала

Средний квадрат случайной ошибки, вызванной помехой на входе, равен среднему квадрату выходной величины системы от помехи и определяется

Из полученных выражений следует, что увеличение общего коэффициента передачи разомкнутой цепи системы k с одной стороны ведет к уменьшению установившегося значения ошибки системы от

166

полезного сигнала, однако, с другой стороны для уменьшения среднего квадрата случайной ошибки, вызванной помехой на входе, необходимо, чтобы значение общего коэффициента передачи разомкнутой цепи системы k было минимально.

Оптимальное значение общего коэффициента передачи системы делается путем минимизации среднего квадрата суммарной ошибки


 

А также другие работы, которые могут Вас заинтересовать

23271. Поняття філософії економіки 29 KB
  По б у то в ий – це рівень філософії людини яка прагне шляхом генерування і реалізації своїх ідей забезпечити собі та своїй сім’ї нормальне життя. Державний рівень – церівень державного мислення сконцентрованих дій спрямованих на розвиток економіки всієї країни зростання продуктивних сил і національного багатства підвищення добробуту народу. Державний рівень економічної філософії– найважливий рівень який є філософською основою розвитку.
23272. Бальзак 31.47 KB
  На початку 30х років у Бальзака виникає задум створити цикл романів в яких він хотів змалювати сучасну йому Францію дослідити суспільство визначити рушійні сили його розвитку основні типи і характери людей. Остаточно зміст і структуру цього твору Бальзак визначив на початку 40х років тоді ж і виникла назва Людська комедія . Бальзак порівнює життя суспільства з життям природи тому ставить собі за мету описати його визначити основні види типи на які поділяється суспільство. Вміння Бальзака розкривати органічний взаємозв'язок окремого...
23274. Історичні романи В.Скотта 18.43 KB
  – Історизм Скотта не тільки антикварний а й те як люди виявляли себе в той чи інший період. Позиція Скотта ніколи не переміщувати об’єкт погляду на історію власний погляд на рух історії історія ніколи не йде крайнощами вона завжди знайде десь серединний шлях. В його пригодах найбільше приваблює читача не розповідь про кохання до шляхетної і цнотливої леді Ровени з якою Айвенго врештірешт щасливо одружується а його романтична закоханість у красунюєврейку Ревекку один з найпривабливіших жіночих характерів у Скотта дівчину із...