45459

Основные задачи анализа систем с минимальной средней квадратичной ошибкой: задача фильтрации, задача экстраполяции, задача дифференцирования и др

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Если задающее воздействие gt является случайным процессом то выходная координата системы yt и ошибка воспроизведения xt = gt yt представляют собой также случайные процессы. Следовательно при случайных воздействиях речь может идти об определении не мгновенных а лишь некоторых средних значений выходной переменной системы и ошибки. Такими средними значениями являются среднее значение квадрата выходной переменной системы 9.23 Следовательно для исследования статистической точности автоматических систем необходимо вычисление...

Русский

2013-11-17

265.5 KB

0 чел.

5. Основные задачи анализа систем с минимальной средней квадратичной ошибкой: задача фильтрации, задача экстраполяции, задача дифференцирования и др.

Оценка работы линейных автоматических систем при случайных стационарных воздействиях

Оценить работу автоматических систем при сигналах внешних воздействий в виде стационарных случайных процессов можно с помощью корреляционных функций и спектральных плотностей.

Если задающее воздействие g(t) является случайным процессом, то выходная координата системы y(t) и ошибка воспроизведения x(t) = g(t) - y(t) представляют собой также случайные процессы.

Следовательно, при случайных воздействиях речь может идти об определении не мгновенных, а лишь некоторых средних значений выходной переменной системы и ошибки.

Такими средними значениями являются среднее значение квадрата выходной переменной системы

(9.20)

и квадрата ошибки

(9.21)

Эти величины можно найти через их корреляционные функции и спектральные плотности

163

(9.22)

(9.23)

Следовательно, для исследования статистической точности автоматических систем необходимо вычисление корреляционных функций Rу(τ), Κx(τ) и спектральных плотностей Sу(ω), Sx(ω) переменной на выходе системы у и ошибки x по известной корреляционной функции Rg(τ) и спектральной плотности Sg(ω) случайного входного воздействия.

Для установления взаимосвязи между корреляционными функциями переменных входа и выхода системы, а также взаимосвязи между их спектральными плотностями используется известное интегральное уравнение (интеграл Дюамеля), на основании которого

(9.24)

где wy(t) - весовая или импульсная функция замкнутой системы по задающему воздействию g(t);

λ - вспомогательное время интегрирования.

Тогда корреляционная функция выходной величины

Ry(r) = y(t) · y(t + τ),

(9.25)

а спектральная плотность, определяемая как прямое преобразование Фурье от корреляционной функции, имеет вид

Sy(ω) = F[Ry(τ)].

(9.26)

Выполнив необходимые преобразования получаем [1]

Sy(ω) = | Фg(jω) |2 · Sg(ω),

(9.27)

164

где Фg(jω) - частотная передаточная функция замкнутой системы по задающему воздействию.

Таким образом, спектральная плотность выходной координаты системы может быть получена умножением спектральной плотности входной величины на квадрат модуля частотной передаточной функции замкнутой системы до задающему воздействию.

Аналогично получается выражение для спектральной плотности ошибки

Sx(ω) = F[Rx(τ)] = | Фxg(jω) |2 · Sg(ω)

(9.28)

где Фxg(jω) - частотная передаточная функция замкнутой системы по ошибке относительно задающего воздействия.

Выражения (9.27) и (9.28) устанавливают связь между спектральными плотностями Sy(ω), Sx(ω) переменной на выходе системы у и ошибки x со спектральной плотности Sg(ω) случайного входного воздействия.

Тогда средние значения квадрата выходной величины системы и ошибки определяются как

(9.29)

(9.30)

При действии на систему независимых друг от друга задающего и возмущающего воздействий g(t) и f(t) спектральная плотность ошибки системы будет

Sx(ω) = |Фxg(jω)|2 Sg(ω) + |Фxf(jω)|2 Sf(ω),

(9.31)

где Φxf(jω) - частотная передаточная функция замкнутой системы относительно точек входа помехи f(t) и ошибки x(t);

Sf(ω) - спектральная плотность сигнала помехи f(t).

165

Суммарная ошибка системы в этом случае будет характеризоваться выражением

x

2

Σ

= x

2

g

+ x

2

f

.

(9.32)

Таким образом оценивается работа линейных автоматических систем при случайных стационарных воздействиях.

Пример. Передаточная функция разомкнутой системы автоматического управления имеет вид

W(s) =

k

s(T1s + 1)(T2s + 1)

 ,

где k - общий коэффициент передачи разомкнутой цепи;
Т
1 и Т2 - постоянные времени.

На входе системы действует полезный регулярный сигнал m(t) = m1 · t и помеха n(t), представляющая собой белый шум со спектральной плотностью Sn(ω) = c2 = const.

Оценить ошибку системы.

Решение. Установившееся значение ошибки от полезного сигнала

Средний квадрат случайной ошибки, вызванной помехой на входе, равен среднему квадрату выходной величины системы от помехи и определяется

Из полученных выражений следует, что увеличение общего коэффициента передачи разомкнутой цепи системы k с одной стороны ведет к уменьшению установившегося значения ошибки системы от

166

полезного сигнала, однако, с другой стороны для уменьшения среднего квадрата случайной ошибки, вызванной помехой на входе, необходимо, чтобы значение общего коэффициента передачи разомкнутой цепи системы k было минимально.

Оптимальное значение общего коэффициента передачи системы делается путем минимизации среднего квадрата суммарной ошибки


 

А также другие работы, которые могут Вас заинтересовать

56358. Техника безопасности на уроках физкультуры 227.5 KB
  Техника безопасности на уроках физической культуры Основы техники безопасности на уроках физической культуры Профилактика травматизма как основное направление техники безопасности на уроках физической культуры Младший школьный возраст и меры профилактики травматизма на уроках физической культуры.
56359. Правила безопасности на уроках физической культуры 100 KB
  Она должна включать две части упражнений: общеподготовительную медленный бег 23 мин комплекс общеразвивающих упражнений 68 мин и специальноподготовительную беговые и прыжковые упражнения ускорения. Выполняя упражнения при разминке необходимо...
56360. Техника безопасности на уроках технологии 25 KB
  Строгое выполнение правил техники безопасности служит надежной гарантией предупреждения несчастных случаев. С первых занятий необходимо знакомить учащихся с правилами техники безопасности и требовать неукоснительного их выполнения.
56361. Техника безопасности на уроках труда 37.5 KB
  Учеников необходимо на первых же занятиях знакомить с этими правилами постоянно напоминать о них требовать безусловного выполнения. Ученик хорошо усваивает правила работы и сознательно применяет их только в том случае когда эти правила хорошо ему понятны.
56362. Правила техніки безпеки під час виконання фізичних вправ 91 KB
  Метою фізичного виховання є формування особистості спрямоване на забезпечення необхідного рівня розвитку життєво важливих рухових навичок і фізичних якостей; загальнолюдських цінностей: здоровя фізичного соціального та психічного благополуччя...
56364. Промышленный подъем в России в конце XIX века. Достижения и просчеты 68.5 KB
  Помочь учащимся понять причины промышленного подъема в России и его результаты в конце 19 века; 2. Оборудование: историческая карта Развитие капитализма в России...
56365. Технология ролевой игры, урок «Встать, суд идет!» 39.5 KB
  Вам обвинению представлять доказательства заявлять ходатайства знакомиться со всеми материалами дела иметь защитника участвовать в судебном разбирательстве заявлять отводы приносить жалобы на действия и решения суда а также имеете право на последнее слово...
56366. Интерьер детской комнаты 62.5 KB
  Обучающая цель: Ознакомить учащихся с современными направлениями оформления детской комнаты и выполнить дизайн-проект детской комнаты. Задачи воспитания и развития: Развивать у учащихся навыки цветового оформления интерьера жилого помещения.