45460

Двойственность в ЛП, построение моделей двойственных задач

Доклад

Информатика, кибернетика и программирование

Любой задаче ЛП можно поставить в соответствие другую задачу сопряженная или двойственная то есть задачи существуют парами. Коэффициенты критерия двойственной задачи образуются из компонентов вектора ограничений прямой задачи. Компоненты вектора ограничений двойственной задачи образуются из коэффициентов линейной формы критерия прямой задачи. Матрица условий двойственной задачи образуется транспонированием матрицы условий прямой задачи.

Русский

2013-11-17

139 KB

20 чел.

17 Двойственность в ЛП, построение моделей двойственных задач.

Любой задаче ЛП можно поставить в соответствие другую задачу (сопряженная или двойственная), то есть задачи существуют парами. Исходная задача называется прямой.

Рассмотрим общий и симметричный случаи. Если в исходной задаче все условия представлены в виде неравенств и все переменные ограничены по знаку, то имеет место симметричная пара. Если в исходной задаче есть равенства и/или переменные не ограничены по знаку, то имеет место общий случай.

ПРИМЕР Рассмотрим планирование некоторого производства. Для выпуска 3 видов продукции необходимы  4 вида ресурсов.Известно: стоимость единицы продукции, норма расхода каждого вида ресурса на единицу продукции.

Прямая задача:

L=C 1 x 1 + C 2 x 2 + C 3 x 3   max;

U 1 : a 1 1 x 1 + a 1 2 x 2 + a 1 3 x 3 b 1 ;

U 2 : a 2 1 x 1 + a 2 2 x 2 + a 2 3 x 3 b 2 ;

U 3 : a 3 1 x 1 + a 3 2 x 2 + a 3 3 x 3 b 3 ;

U 4 : a 4 1 x 1 + a 4 2 x 2 + a 4 3 x 3 b 4 ; x j   0

Двойственная задача:  = b 1 U 1 + b 2 U 2 + b 3 U 3 + b 4 U 4  min ;

a 1 1 U 1 + a 2 1  U 2  + a 3 1 U 3 + a 4 1 U 4 C 1 ;

а 1 2 U 1 + a 2 2  U 2  + a 3 2 U 3 + a 4 2 U 4 C 2 ;  (1)

a 1 3 U 1 + a 2 3  U 2  + a 3 3 U 3 + a 4 3 U 4 C 3 ; U I   0.

Это симметричная пара. Правила:

  1.        Если в прямой задаче  целевая функция минимизируется, то в двойственной – максимизируется, и наоборот.
  2.        Коэффициенты критерия двойственной задачи образуются из компонентов вектора ограничений прямой задачи.
  3.        Компоненты вектора ограничений двойственной задачи образуются из коэффициентов линейной формы (критерия) прямой задачи. Матрица условий двойственной задачи образуется транспонированием матрицы условий прямой задачи. Знаки неравенств двойственной задачи обратны знакам неравенств прямой.

Правила 1) – 4)  свойственны любым задачам, а 5)  - только симметричным. В двойственной задаче U i  - переменные (двойственные переменные). Число условий двойственной задачи равно числу переменных прямой задачи. Число переменных двойственной задачи равно числу условий прямой задачи. Если для двойственной задачи построить двойственную, то получим прямую.

Уравнение размерности: [a][U]=[C].

Пусть В 1 – фонд временного оборудования (сколько часов оборудование может работать в течение определенного времени). Тогда

U имеет смысл стоимости единицы ресурса в единицах критерия, поэтому двойственные переменные называют теневыми ценами (та цена, по которой готовы приобрести единицу ресурса).

ПРИМЕР.

В левой части (1) определяются затраты по всем видам ресурсов на единицу продукции, в правой – произведенная стоимость, следовательно, эти неравенства означают, что суммарные затраты произведенной продукции не могут быть меньше, чем произведенная стоимость. Другой вариант интерпретации двойственной задачи. Общий случай: будем опираться на правила построения симметричной пары. Среди условий прямой задачи имеет место равенство. Пусть k - е условие -  равенство (остальные условия представлены неравенствами).

   

Двойственная задача:

Если какая-либо переменная в прямой задаче не имеет ограничения по знаку, то эту переменную заменяем разностью переменных:

 

В двойственной задаче:

18  Экономическая интерпретация двойственности

Любой задаче ЛП можно поставить в соответствие другую задачу, называемую сопряженной или двойственной. При этом исходную задачу называют прямой. Выделяют общий и симметричный случаи двойственности. Если в прямой задаче все условия представлены в виде неравенств и все переменные ограничены по знаку, то имеет место симметричная пара двойственных задач. Когда в исходной задаче есть равенства и/или переменные, которые не ограничены по знаку, то говорят об общем случае двойственности (симметрия моделей отсутствует).

Интерпретация двойственной задачи

Что отражает двойственная модель? Оказывается, она дает возможность оценить решение исходной (прямой) задачи. В рассматриваемом примере прямая задача состоит, фактически, в наилучшем использовании всех имеющихся ресурсов. Каждому варианту плана поизводства продукции соответствует свое использование ресурсов, а, следовательно, и их полезность или значимость. Под последним понимается степень влияния ресурса на результат. Так как каждому условию прямой задачи, отражающему использование ресурса, ставится в соответствие двойственная переменная, то именно она и является мерилом значимости этого ресурса. Действительно, рассмотрим уравнение размерности условия двойственной задачи [A][U]=[C]. Пусть, например, ресурс – фонд времени оборудования (сколько часов оборудование может быть загружено в течение планового периода). Тогда размерность двойственной переменной будет.Итак, U дает стоимость единицы ресурса в единицах критерия, то есть в нашем случае – прирост произведенной стоимости в рублях на каждый дополнительный час работы оборудования. Ниже, в теоремах двойственности, это будет показано строго математически. Поэтому двойственные переменные называют также теневыми ценами. Чтобы увидеть отличие теневой цены от рыночной, возьмем конкретные цифры. Пусть рыночная цена некоторого ресурса, полностью используемого в производстве, равна 500 руб/кг и 1 кг достаточно (при наличии других ресурсов) для выпуска дополнительной продукции на сумму 100000 руб. Тогда теневая цена этого ресурса равна 100000 руб. Если поставщик сорвал поставку данного ресурса, то он должен нести ответственность не в размере рыночной цены, а по теневой цене за каждую единицу недопоставленного ресурса. Такое предложение было высказано впервые Л. Канторовичем, который называл двойственные переменные объективно обусловленными оценками, сокращенно О.О.О. (объективные цены, складывающиеся в конкретной ситуации производства и потребления).Таким образом, чем больше абсолютная величина двойственной переменной, тем выше значимость ресурса в полученном решении, и наоборот, более сильному влиянию ресурса на критерий соответствует большее значение двойственной переменной. Теперь интерпретируем условия двойственной задачи. Если Ui – объективная цена за единицу ресурса, то левая часть неравенства двойственной модели представляет собой полные затраты на производство единицы продукции, а все неравенство отражает тот факт, что произведенная стоимость Ci не может превышать суммарных затрат. Значимость ресурса эквивалентна его дефицитности. Поэтому критерий двойственной задачи можно интерпретировать как суммарную дефицитность ресурсов, которую следует минимизировать.Другая трактовка заключается в том, что двойственная задача моделирует взаимодоговоренности Покупателя и Продавца ресурсов. Продавец готов продать свои ресурсы, отказавшись от производства продукции, если цены на них (Ui) будут такими, что он получит за ресурсы, расходуемые им на единицу продукции, не меньше Ci, то есть не меньше того, что он имел бы от производства этой продукции. Эти требования выражаются неравенствами двойственной задачи. С другой стороны, Покупатель стремится к таким ценам, которые минимизируют плату за все ресурсы. Это стремление и выражает критерий двойственной задачи.

19 Теоремы двойственности.

Теорема 1. Если в оптимальном решении прямой задачи условие выполняется как строгое неравенство:

то соответствующая двойственная переменная равна нулю:

 U * i=0.   (2)

(1) означает, что это ресурс используется не полностью, следовательно, такое изменение этого ресурса не влияет на расширение, то есть значение двойственной переменной равно нулю. Или, если дополнительная переменная больше нуля, то соответствующая двойственная переменная равна нулю.

Теорема 2. Если в единственном оптимальном решении прямой задачи условие выполняется как равенство, то есть

то соответствующая двойственная переменная будет больше нуля. Равенство означает, что этот ресурс полностью исчерпан, следовательно, изменяет критерий и его стоимость не равна нулю. Если дополнительная переменная равна нулю, то двойственная переменная не равна нулю.

Геометрическая интерпретация:

                                                                       

          b2                    L*     D – допустимое множество;

      b1                             1)изменение b4 не повлияло на L*;

                             D                         2)изменение  b1 и b2 влечет за собой             b3                                      изменение критерия.

         b4   

Допустим, что решение не является единственным

          A                *изменяем b1 – критерий не меняется;

                 b2  *при любом измененииb2 происходит

   b1                  b3       L*            изменение критерия.

b5         D

                      b4 

Теорема 1`. Если в оптимальном решении двойственной задачи условие выполняется как строгое неравенство:

, то соответствующая переменная двойственной задачи равна нулю. Если затраты превышают произведенную стоимость, то производство невыгодно.

Теорема 2`. Если в единственном оптимальном решении двойственной задачи условие выполняется как равенство, то соответствующая переменная прямой задачи строго больше нуля.

Если произведенная стоимость равна затратам, то  производим эту продукцию.

Вторая основная теорема двойственности

Для того, чтобы векторы x* и U* являлись оптимальными решениями прямой и двойственной задачи соответственно, необходимо и достаточно выполнение следующих условий:

ПРИМЕР. Прямая задача:

L=7x1+5x2max  U1: 2x1+3x219; U2: 2x1+ x2 13;

                           U3  3x2 15; U4: 3x1  18; x1, x2 0.

Двойственная задача:

=19U1+13U2+15U3+18U4miin;

2U1+2U2+3U47; 3U1+U2+3U35; Ui 0 i.

                                    

Так как х5 и х6 не равны нулю, то третье и четвертое условие прямой задачи выполняются как строгие неравенства.

.

Теорема 3. Если x и U – допустимые решения прямой и двойственной задачи соответственно, то есть они удовлетворяют модели. прямая задача:

L=CTxmax; AxB; x0.

двойственная задача:

=BTUmin;  AT UC; U0, то  L(x) (U).

Доказательство.

Теорема 4. Если x* и U* - допустимые решения прямой и двойственной задачи L(x*)= (U*), то эти решения  являются оптимальными решениями прямой и двойственной задачи соответственно. Доказательство. Из теоремы (3) следует:x: L(x)  (U*).

И, так как L(x*)= (U*) по условию, то  x L(x) L(x*), следовательно, х*- оптимальное решение прямой задачи.

Аналогично доказывается, что U* - оптимальное решение двойственной задачи.

Теорема5. Для любых оптимальных x* и U* линейные формы равны:  L(x*)= (U*).

Доказательство.

левые части равны между собой, следовательно, L(x*)=(U*).

Теорема 6. Если линейная форма одной из задач двойственной пары не ограничена, то условия другой противоречивы. (Обратное не всегда правильно)

Доказательство. Допустим, что при неограниченности L(x) в прямой задаче условия двойственной задачи непротиворечивы, то есть совместны, следовательно, существует допустимое решение, а значит. значение критерия конечно.

L(x)(x), получается противоречие условию теоремы.

Следовательно, условия двойственной задачи противоречивы.

Первая основная теорема двойственности.

Если одна задача имеет решение (разрешима), то и другая задача разрешима, и наоборот.

Исходя из теории двойственности, получаем методы:

  1.  двойственный симплекс-метод (метод последовательного улучшения оценок) – по сути, является обратным симплекс-методу. В основе лежит то, что начинаем работу с условиями прямой задачи и постепенно переходим на решение двойственной.

Прямую задачу решают двойственно: строят оптимальные решения. но берут недопустимые Х. Далее  при Δ0 идут так, чтобы Х стремились бы к допустимым. Вначале выбирают строку по minX (из отрицательных). Затем делят Δ на отрицательное и по минимальному отношению находят направляющий столбец. Последующие действия – то есть же самые.

  1.  метод сокращения невязок(венгерский метод), в нем используются оба подхода.

Если все условия представлены равенствами,  решения ведутся по неотрицательным переменным, то в условиях равенства есть невязки. Как только они выполняются, найдено оптимальное решение. Этот метод более эффективен при решении транспортной задачи.

20 Двойственный и модифицированный симплекс методы.

Модифицированный алгоритм (обратной матрицы)

 Для всего текущего решения   - величина одна и та же.  

 

Для вычисления оценок мы можем использовать только обратную матрицу. Пусть имеется матрица, обратная базисной. Тогда по формуле (5) вычислим А, по формуле (4) вычисляем Δj для небазисных переменных. Далее действуем, как в стандартном методе, то есть находим переменную, которая должна вводиться в решение. Восстанавливаем столбец, который будет играть роль направляющего: по формуле (3)  (Arr-й вектор условий ) вычисляем

Находим направляющий элемент. Затем получаем новую обратную матрицу путем симплекс-преобразования обратной матрицы. Далее процесс повторяется. Часто этот метод основан на мультипликативном представлении обратной матрицы. Это позволяет значительно экономить объем обратной матрицы. В начальном решении матрица и обратная  матрица равны (единичные). Далее:

- это мультипликативное представление. Ek  хранит отношения направляющей строки.

- этот вариант тем эффективнее, чем меньше плотность вариантов, но недостатком является то, что неразрешимость задачи появляется немного позднее.

27 Двойственность Т-задач, экономическая интерпретация потенциалов.

Двойственность транспортных задач

Чтобы построить двойственную задачу, необходимо провести преобразование прямой задачи:

Двойственная задача:

Δij0.Итак, двойственные переменные играют роль потенциалов.

Если удовлетворены условия двойственной задачи, то решение прямой задачи оптимально.

Разность потенциалов показывает, как изменяется линейная форма при изменении соответствующих потребностей и возможностей на единицу. Изменение происходит в паре, так как в целом задача должна остаться сбалансированной


 

А также другие работы, которые могут Вас заинтересовать

39266. Управление каналами сбыта на «ОАО Беллакт» 214.5 KB
  Канал распределения — совокупность фирм или отдельных лиц, которые принимают на себя или помогают передать кому-то другому право собственности на конкретный товар или услугу на их пути от производителя к потребителю.
39267. Конструкция преобразователя напряжения 12/300В 743 KB
  Требования безопасности при производстве преобразователя напряжения Пожарная безопасность. Для питания электрооборудования от источников постоянного тока широко используются преобразователи напряжения. Наметившаяся тенденция микроминиатюризации в радиоэлектронике привела к тому что полупроводниковые преобразователи...
39268. Разработка конструкции печатного узла регулируемого двухполярного блока питания 950.5 KB
  1 Выбор типа печатной платы односторонняя двухсторонняя; 15 – 16 4.2 Выбор материала печатной платы; 16 – 18 4.3 Выбор метода изготовления печатной платы; 18 – 19 4.6 Расчет размеров печатной платы узла; 23 – 24 4.
39269. Технико-экономический расчет и проектирование участка изготовления печатных плат для сборки изделия: Реле времени с годовой программой 115000 штук 1.12 MB
  1 Расчет количества оборудования коэффициента загрузки. Технические данные оборудования 2.7 Расходы по содержанию и эксплуатации оборудования 2. По мере развития и совершенствования интегральных схем происходит увеличение сложности и стоимости оборудования для их производства и контроля качества.
39270. Рабочее место электромонтажника 134 KB
  В современных производственных условиях рабочие монтажники радиоэлектронной аппаратуры должны уметь пользоваться сборочномонтажными чертежами читать электрические схемы знать слесарносборочные монтажные и регулировочные операции маркировку современных электрорадиоэлементов обнаруживать и устранять неисправности в собираемых изделиях знать правила безопасности труда. 4 Перечень НТД по охране труда безопасности работы руководящим должностным и производственным инструкциям № № инструкций Наименование инструкций 1 489 По охране...
39271. Устройство защиты аппаратуры от аномальных напряжений сети 284.32 KB
  Котова Устройство защиты аппаратуры от аварийного напряжения сети Радио 2008 № 8 с. Из сетевого напряжения ограничительным диодом VD2 формируется переменное близкое к прямоугольному напряжение амплитудой около 18 В. Варистор RU1 защищает симистор VS1 от бросков напряжения при коммутации нагрузки индуктивного характера. Контроль величины сетевого напряжения осуществляет встроенный АЦП микроконтроллера DD1.
39272. Машиностроительный комплекс 425.17 KB
  Изменение структуры занятости по отраслям хозяйственного комплекса и сферам приложения труда свидетельствует о развитии рыночных структур в экономике. Повышение специализации производства требует использования высокопроизводительного оборудования; внедрения новых методов технологии механизации и автоматизации производственных процессов; повышения уровня квалификации персонала и увеличения производительности труда это снижает себестоимость при одновременном улучшении качества что приводит к увеличению реализации росту прибыли и...
39273. Социология труда и менеджмента. (Ф. Тейлор, Э. Мейо) 17.07 KB
  Социология труда (в развитых государствах Запада чаще она именуется индустриальной социологией) начала развиваться в 20-30-х гг. XX века. Исследуя проблемы, связанные с социальной сущностью труда, индустриальная социология важным объектом анализа ставит социально-трудовые отношения.
39274. АНАЛІЗ АСОРТИМЕНТУ, СПОЖИВНИХ ВЛАСТИВОСТЕЙ І КОКУРЕНТОСПРОМОЖНОСТІ КОМП’ЮТЕРІВ, ЯКІ РЕАЛІЗУЮТЬСЯ В ТОВ «САВ-ДІСТРИБ’ЮШН» В М. ДОНЕЦЬК 727 KB
  Основні тенденції розвитку світового і вітчизняного ринку комп’ютерів Фактори які формують асортимент і якість комп'ютерів Аналіз ринку комп’ютерів в Україні та світі Нові технології в розвитку асортименту комп’ютерів Обґрунтування та удосконалення класифікації комп’ютерів РОЗДІЛ 2. Практичні аспекти реалізації оцінки якості комп’ютерів 2. Споживні параметри комп’ютерів та методи їх оцінки 2.