45493

Регрессионные модели

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Линейная одномерная модель: y =0 1 x Ei = Yi 0 1 Xi i = 1n где n число снятых экспериментально точек. Ошибки всех точек i от 1 до n следует сложить. Найдем значение sigm по формуле: Если в интервал Yэ Yт Yэ попадает 67 точек и более то выдвинутая нами гипотеза принимается. Если требуется большая уверенность в результате то используют дополнительное условие: в интервал Yэ 2 Yт Yэ 2 должны попасть 95 экспериментальных точек.

Русский

2013-11-17

85.5 KB

0 чел.

Регрессионные модели

По степени информированности исследователя об объекте существует деление объектов на три типа "ящиков".

  •  Черный (ничего об объекте неизвестно).
  •  Серый (известна внешняя структура объекта, неизвестны количественные значения параметров).
  •  Белый (об объекте известно все).

Вход и выход можно наблюдать и измерять. Содержимое ящика неизвестно. Задача - построить модель, зная вход и выход, то есть определить содержимое ящика.

  1.  Исследователь вносит гипотезу о структуре "ящика". 

Рассматривая экспериментально полученные данные, предположим, что они подчиняются линейной гипотезе, то есть выход y зависит от входа x линейно. Тогда:
y =A1 x + A0

  1.  Определим неизвестные коэффициенты модели A0 и A1. 

a) Линейная одномерная модель:

y =A0+ A1 x 

Ei = Yi - A0 - A1 Xi,   i = 1,n      , где n - число снятых экспериментально точек.

Ei- ошибка между теоретическим значением функции (A0 + A1 x) и экспериментальным Y у точки i. Ошибки всех точек (i от 1 до n) следует сложить. Чтобы положительные ошибки не компенсировали в сумме отрицательные, каждую из ошибок возводят в квадрат и складывают их значения в суммарную уже одного знака. Данный метод поэтому называется Методом наименьших квадратов.

Таким образом, F - суммарная ошибка. F является функцией двух переменных A0 и A1, так как меняя эти величины можно влиять на величину ошибки. Естественно, что суммарную ошибку следует минимизировать . Для этого найдем производные от F по каждой переменной и приравняем их нулю.

Получим систему из двух уравнений

Надо найти коэффициенты A0 и A1, для этого решаем систему методом Крамера, построив предварительно определитель следующего вида:

  1.  Проверка. 

Чтобы определить, принимается гипотеза или нет, нужно рассчитать ошибку между теоретической и экспериментальной зависимостями.



Найдем значение "sigma" по формуле:

Если в интервал (Yэ - Yт Yэ + ) попадает 67% точек и более, то выдвинутая нами гипотеза принимается. В противном случае, выбирают более сложную гипотезу или проверяют исходные данные. Если требуется большая уверенность в результате, то используют дополнительное условие: в интервал (Yэ - 2 Yт Yэ +2 ) должны попасть 95% экспериментальных точек.

Условие принятия гипотезы выведено из нормального распределения случайных ошибок.

b) Множественная линейная модель.

Предположим, что функциональная структура "ящика" имеет линейную зависимость, но количество входных сигналов, действующих одновременно, равно m.
Y = A0+ A1X1 + ... + Am Xm

Так как мы имеем экспериментальные данные о всех входах и выходах "черного" ящика, то можно вычислить ошибку между теоретическим значением Y и экспериментальным:


Ei = Yi - A0- A1X1 - ... - Am Xm,
тогда суммарная ошибка будет

Ошибку минимизируем. Ошибка зависит от выбора параметров
A0 , A1 , ..., Am . Для нахождения экстремума приравняем все частные производные F по неизвестным A0 , A1 , ..., Am к нулю:

Получим систему из (m+1) уравнения с (m+1) неизвестной, которую следует решить для определения A0 , A1 , ..., Am . Для решения системы уравнений построим определители:

Вычисляем коэффициенты A0 , A1 , ..., Am .

Дальше вычисляется ошибка и находится по аналогии с одномерной моделью. К линейной множественной модели приводятся многие нелинейные модели подстановками и переобозначениями

  1.  Проведем эксперимент - возьмем несколько точек например так 

  1.  Далее выбираем гипотезу допустим, для нашего примера 

Возьмем линейную функцию y = a x + b 

  1.  Теперь запишем уранение ошибки эксперимента 

  1.  Далее необходимо найти все коэффициенты уравнения

Для нахождения экстремума приравняем частные производные

функции F по переменным а и b к нулю:

По имеющимся экспериментальным данным построим следующую таблицу:

i

Xi

Yi

Xi2 

XiYi

1

2

3

4

6

2

5

4

25

20

3

7

7

49

49

4

8

4

64

32

5

10

8

100

80

6

11

7

121

77

7

14

9

196

126

Далее из таблицы берем данные для построения определителя:

Решая систему уравнений:
5 b + 57 a = 42
57 b + 559 a = 390

получим следующие коэффициенты а и b:
a = 0.51; b = 1.84

Таким образом, мы получили следующее линейное уравнение:

y = 0.51 x + 1.84

  1.  И теперь определяем, принимается гипотеза или нет.

Для этого необходимо рассчитать ошибку между теоретической и экспериментальной зависимостью .

  1.  Далее нужно найти значение "" по формуле: = sqrt(F/n)
    Если в интервал (Y
    э- YT Yэ+) попадает 67% точек и более, то выдвинутая нами гипотеза принимается.

    Для нашего примера. 

E1= 0.14 =>E1 2= 0.02
E
2 = -0.39 => E22 = 0.15
E
3 = 1.59 =>E3 2= 2.53
E
4 = -1.92 => E4 2= 3.69
E
5 = 1.06 =>E52= 1.12
E
6 = -0.45 => E6 2= 0.203
E
7 = 0.02 =>E7 2= 0.0004 

Отсюда:

Исходя из полученных данных сделайте вывод.
Для нашего примера он будет звучать так:
проверив все экспериментальные точки на вхождение в интервал (Yэ-YT Yэ+), мы находим, что около 71.6% точек попали в sigma-интервал. Следовательно наша гипотеза о линейности верна.


 

А также другие работы, которые могут Вас заинтересовать

5393. Товарне виробництво 52 KB
  Товарне виробництво Форми суспільного господарства: натуральне і товарне виробництво. Товарне виробництво: ознаки, умови, історичні види. Основні властивості товару. Величина вартості товару. Історично визначають два основні ...
5394. Классификация болезней периодонта 73 KB
  Классификация болезней периодонта На основании проведённого клинического исследования пациента установляется диагноз согласно принятой классификации болезней периодонта. Международная классификация болезней десны и периодонта (МКБ -10) КО 5.0 Острый...
5395. Законодательные основы предпринимательской деятельности в фармации 27.93 KB
  Законодательные основы предпринимательской деятельности в фармации 1.Проверка делового партнёра 2.Понятие и значение сделки. 3.Основные виды сделок 4.Недействительность сделок 5.Сроки исковой давности. ЗАДАЧА—установление честности, добропорядо...
5396. Защита государственных интересов c 1900 по 1917 гг 32.32 KB
  Защита государственных интересов c 1900 по 1917 гг. Перлюстрация, наружное наблюдение и внутренняя агентура являлись тремя базисами, на которых строился политический розыск в начале XX в. При этом единственным, вполне надежным средством, обеспечивав...
5398. Законодательные основы предпринимательской деятельности в фармации. Способы мошенничества 118.5 KB
  Законодательные основы предпринимательской деятельности в фармации Закон РФ О коммерческой тайне Слагаемые понятия безопасности. Способы мошенничества. ФЗ О несостоятельности (банкротстве). Признаки банкротства...
5399. Основные положения системного анализа 74.5 KB
  Основные понятия и определения системного анализа В настоящее время наиболее конструктивным из направлений системных исследований считается СИСТЕМНЫЙ АНАЛИЗ, который впервые появился в работах корпорации RAND в связи с задачами военного управл...
5400. Метод проецирования 216.5 KB
  Метод проецирования 1.1. Центральное проецирование Центральное проецирование является наиболее общим случаем получения проекций геометрических фигур. В основу построения любого изображения положена операция проецирования, которая заключается в следу...
5401. Философия: функции, этапы развития и современные подходы 96.5 KB
  Философия: функции, этапы развития и современные подходы. Вопрос 1 Типы мировоззрения, вопросы и периоды развития философии. Ценность любой философии, в конечном счёте, измеряется её способностью превратиться в живую популярную философию (А. Швейцер...