4567

Линейный конгруэнтный метод в программировании

Лабораторная работа

Информатика, кибернетика и программирование

Линейный конгруэнтный метод Линейный конгруэнтный метод является одной из простейших и наиболее употребительных в настоящее время процедур, имитирующих случайные числа. В этом методе используется операция mod(x, y), возвращающая остаток от деления п...

Русский

2012-11-22

97.5 KB

116 чел.

Линейный конгруэнтный метод

Линейный конгруэнтный метод является одной из простейших и наиболее употребительных в настоящее время процедур, имитирующих случайные числа. В этом методе используется операция mod(xy), возвращающая остаток от деления первого аргумента на второй. Каждое последующее случайное число рассчитывается на основе предыдущего случайного числа по следующей формуле:

ri + 1 = mod(k · ri + bM).

M — модуль (0 < M);

k — множитель (0 ≤ k < M);

b — приращение (0 ≤ b < M);

r0 — начальное значение (0 ≤ r0 < M).

Последовательность случайных чисел, полученных с помощью данной формулы, называется линейной конгруэнтной последовательностью. Многие авторы называют линейную конгруэнтную последовательность при b = 0 мультипликативным конгруэнтным методом, а при b ≠ 0смешанным конгруэнтным методом.

Для качественного генератора требуется подобрать подходящие коэффициенты. Необходимо, чтобы число M было довольно большим, так как период не может иметь больше M элементов. С другой стороны, деление, использующееся в этом методе, является довольно медленной операцией, поэтому для двоичной вычислительной машины логичным будет выбор M = 2N, поскольку в этом случае нахождение остатка от деления сводится внутри ЭВМ к двоичной логической операции «AND». Также широко распространен выбор наибольшего простого числа M, меньшего, чем 2N: в специальной литературе доказывается, что в этом случае младшие разряды получаемого случайного числа ri + 1 ведут себя так же случайно, как и старшие, что положительно сказывается на всей последовательности случайных чисел в целом. В качестве примера можно привести одно из чисел Мерсенна, равное 231 – 1, и таким образом, M = 231 – 1.

Одним из требований к линейным конгруэнтным последовательностям является как можно большая длина периода. Длина периода зависит от значений M, k и b.

Линейные конгруэнтные последовательности – не единственный из предложенных источников случайных чисел. Его можно обобщить, превратив его, например, в квадратичный конгруэнтный метод

Известен квадратичный метод, предложенный Р. Ковэю:

Известен метод получения случайных чисел, где реализуется последовательность Фибоначчи:

Известен также метод получения случайных чисел, предложенный Грином:

где k- большое число.

Проверка качества работы генератора

От качества работы ГСЧ зависит качество работы всей системы и точность результатов. Поэтому случайная последовательность, порождаемая ГСЧ, должна удовлетворять целому ряду критериев.

Осуществляемые проверки бывают двух типов:

  •  проверки на равномерность распределения;
  •  проверки на статистическую независимость.

Проверки на равномерность распределения

1) ГСЧ должен выдавать близкие к следующим значения статистических параметров, характерных для равномерного случайного закона: 

— математическое ожидание;

— дисперсия;

— среднеквадратичное отклонение.


2) Частотный тест
 

Частотный тест позволяет выяснить, сколько чисел попало в интервал (mr – σrmr + σr), то есть (0.5 – 0.2887; 0.5 + 0.2887) или, в конечном итоге, (0.2113; 0.7887). Так как 0.7887 – 0.2113 = 0.5774, заключаем, что в хорошем ГСЧ в этот интервал должно попадать около 57.7% из всех выпавших случайных чисел (см. рис. 22.9).

Рис. 22.9. Частотная диаграмма идеального ГСЧ
в случае проверки его на частотный тест

Также необходимо учитывать, что количество чисел, попавших в интервал (0; 0.5), должно быть примерно равно количеству чисел, попавших в интервал (0.5; 1).

3) Проверка по критерию «хи-квадрат» 

Критерий «хи-квадрат» (χ2-критерий) — это один из самых известных статистических критериев; он является основным методом, используемым в сочетании с другими критериями. Критерий «хи-квадрат» был предложен в 1900 году Карлом Пирсоном. Его замечательная работа рассматривается как фундамент современной математической статистики.

Для нашего случая проверка по критерию «хи-квадрат» позволит узнать, насколько созданный нами реальный ГСЧ близок к эталону ГСЧ, то есть удовлетворяет ли он требованию равномерного распределения или нет.

Частотная диаграмма эталонного ГСЧ представлена на рис. 22.10. Так как закон распределения эталонного ГСЧ равномерный, то (теоретическая) вероятность pi попадания чисел в i-ый интервал (всего этих интервалов k) равна pi = 1/k. И, таким образом, в каждый из k интервалов попадет ровно по pi · N чисел (N — общее количество сгенерированных чисел).

Рис. 22.10. Частотная диаграмма эталонного ГСЧ

Реальный ГСЧ будет выдавать числа, распределенные (причем, не обязательно равномерно!) по k интервалам и в каждый интервал попадет по ni чисел (в сумме n1 + n2 + … + nk = N). Как же нам определить, насколько испытываемый ГСЧ хорош и близок к эталонному? Вполне логично рассмотреть квадраты разностей между полученным количеством чисел ni и «эталонным» pi · N. Сложим их, и в результате получим:

χ2эксп. = (n1 – p1 · N)2 + (n2 – p2 · N)2 + … + (nk – pk · N)2.

Из этой формулы следует, что чем меньше разность в каждом из слагаемых (а значит, и чем меньше значение χ2эксп.), тем сильнее закон распределения случайных чисел, генерируемых реальным ГСЧ, тяготеет к равномерному.

В предыдущем выражении каждому из слагаемых приписывается одинаковый вес (равный 1), что на самом деле может не соответствовать действительности; поэтому для статистики «хи-квадрат» необходимо провести нормировку каждого i-го слагаемого, поделив его на pi · N:

Наконец, запишем полученное выражение более компактно и упростим его:

Мы получили значение критерия «хи-квадрат» для экспериментальных данных.

В табл. 22.2 приведены теоретические значения «хи-квадрат» (χ2теор.), где ν = N – 1 — это число степеней свободы, p — это доверительная вероятность, задаваемая пользователем, который указывает, насколько ГСЧ должен удовлетворять требованиям равномерного распределения, или pэто вероятность того, что экспериментальное значение χ2эксп. будет меньше табулированного (теоретического) χ2теор. или равно ему.

Таблица 22.2.
Некоторые процентные точки χ2-распределения

p = 1%

p = 5%

p = 25%

p = 50%

p = 75%

p = 95%

p = 99%

ν = 1

0.00016

0.00393

0.1015

0.4549

1.323

3.841

6.635

ν = 2

0.02010

0.1026

0.5754

1.386

2.773

5.991

9.210

ν = 3

0.1148

0.3518

1.213

2.366

4.108

7.815

11.34

ν = 4

0.2971

0.7107

1.923

3.357

5.385

9.488

13.28

ν = 5

0.5543

1.1455

2.675

4.351

6.626

11.07

15.09

ν = 6

0.8721

1.635

3.455

5.348

7.841

12.59

16.81

ν = 7

1.239

2.167

4.255

6.346

9.037

14.07

18.48

ν = 8

1.646

2.733

5.071

7.344

10.22

15.51

20.09

ν = 9

2.088

3.325

5.899

8.343

11.39

16.92

21.67

ν = 10

2.558

3.940

6.737

9.342

12.55

18.31

23.21

ν = 11

3.053

4.575

7.584

10.34

13.70

19.68

24.72

ν = 12

3.571

5.226

8.438

11.34

14.85

21.03

26.22

ν = 15

5.229

7.261

11.04

14.34

18.25

25.00

30.58

ν = 20

8.260

10.85

15.45

19.34

23.83

31.41

37.57

ν = 30

14.95

18.49

24.48

29.34

34.80

43.77

50.89

ν = 50

29.71

34.76

42.94

49.33

56.33

67.50

76.15

ν > 30

ν + sqrt(2ν) · xp + 2/3 · x2p – 2/3 + O(1/sqrt(ν))

xp =

–2.33

–1.64

–0.674

0.00

0.674

1.64

2.33

Приемлемым считают p от 10% до 90%.

Если χ2эксп. много больше χ2теор. (то есть p — велико), то генератор не удовлетворяет требованию равномерного распределения, так как наблюдаемые значения ni слишком далеко уходят от теоретических pi · N и не могут рассматриваться как случайные. Другими словами, устанавливается такой большой доверительный интервал, что ограничения на числа становятся очень нежесткими, требования к числам — слабыми. При этом будет наблюдаться очень большая абсолютная погрешность.

Еще Д. Кнут в своей книге «Искусство программирования» заметил, что иметь χ2эксп. маленьким тоже, в общем-то, нехорошо, хотя это и кажется, на первый взгляд, замечательно с точки зрения равномерности. Действительно, возьмите ряд чисел 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, … — они идеальны с точки зрения равномерности, и χ2эксп. будет практически нулевым, но вряд ли вы их признаете случайными.

Если χ2эксп. много меньше χ2теор. (то есть p — мало), то генератор не удовлетворяет требованию случайного равномерного распределения, так как наблюдаемые значения ni слишком близки к теоретическим pi · N и не могут рассматриваться как случайные.

А вот если χ2эксп. лежит в некотором диапазоне, между двумя значениями χ2теор., которые соответствуют, например, p = 25% и p = 50%, то можно считать, что значения случайных чисел, порождаемые датчиком, вполне являются случайными.

При этом дополнительно надо иметь в виду, что все значения pi · N должны быть достаточно большими, например больше 5 (выяснено эмпирическим путем). Только тогда (при достаточно большой статистической выборке) условия проведения эксперимента можно считать удовлетворительными.

Итак, процедура проверки имеет следующий вид.

  1.  Диапазон от 0 до 1 разбивается на k равных интервалов.
  2.  Запускается ГСЧ N раз (N должно быть велико, например, N/k > 5).
  3.  Определяется количество случайных чисел, попавших в каждый интервал: ni, i = 1, …, k.
  4.  Вычисляется экспериментальное значение χ2эксп. по следующей формуле:

где pi = 1/k — теоретическая вероятность попадания чисел в k-ый интервал.

  1.  Путем сравнения экспериментально полученного значения χ2эксп. с теоретическим χ2теор. (из табл. 22.2) делается вывод о пригодности генератора для использования. Для этого: а) входим в табл. 22.2 (строка = количество экспериментов – 1); б) сравниваем вычисленное χ2эксп. с χ2теор., встречающимися в строке. При этом возможно три случая.

Первый случай: χ2эксп. много больше любого χ2теор. в строке — гипотеза о случайности равномерного генератора не выполняется (разброс чисел слишком велик, чтобы быть случайным).

Второй случай: χ2эксп. много меньше любого χ2теор. в строке — гипотеза о случайности равномерного генератора не выполняется (разброс чисел слишком мал, чтобы быть случайным).

Третий случай: χ2эксп. лежит между значениями χ2теор. двух рядом стоящих столбцов — гипотеза о случайности равномерного генератора выполняется с вероятностью p (то есть в p случаях из 100).

Заметим, что чем ближе получается p к значению 50%, тем лучше.

Проверки на статистическую независимость

1) Проверка на частоту появления цифры в последовательности 

Рассмотрим пример. Случайное число 0.2463389991 состоит из цифр 2463389991, а число 0.5467766618 состоит из цифр 5467766618. Соединяя последовательности цифр, имеем: 24633899915467766618.

Понятно, что теоретическая вероятность pi выпадения i-ой цифры (от 0 до 9) равна 0.1.

Далее следует вычислить частоту появления каждой цифры в выпавшей экспериментальной последовательности. Например, цифра 1 выпала 2 раза из 20, а цифра 6 выпала 5 раз из 20.

Далее считают оценку и принимают решение по критерию «хи-квадрат».

2) Проверка появления серий из одинаковых цифр 

Обозначим через nL число серий одинаковых подряд цифр длины L. Проверять надо все L от 1 до m, где m — это заданное пользователем число: максимально встречающееся число одинаковых цифр в серии.

В примере «24633899915467766618» обнаружены 2 серии длиной в 2 (33 и 77), то есть n2 = 2 и 2 серии длиной в 3 (999 и 666), то есть n3 = 2.

Вероятность появления серии длиной в L равна: pL = 9 · 10L (теоретическая). То есть вероятность появления серии длиной в один символ равна: p1 = 0.9 (теоретическая). Вероятность появления серии длиной в два символа равна: p2 = 0.09 (теоретическая). Вероятность появления серии длиной в три символа равна: p3 = 0.009 (теоретическая).

Например, вероятность появления серии длиной в один символ равна pL = 0.9, так как всего может встретиться один символ из 10, а всего символов 9 (ноль не считается). А вероятность того, что подряд встретится два одинаковых символа «XX» равна 0.1 · 0.1 · 9, то есть вероятность 0.1 того, что в первой позиции появится символ «X», умножается на вероятность 0.1 того, что во второй позиции появится такой же символ «X» и умножается на количество таких комбинаций 9.


 

А также другие работы, которые могут Вас заинтересовать

14450. Приготування страв із макаронних виробів. Запікання 106.5 KB
  Тема. Приготування страв із макаронних виробів. Запікання. Мета: ознайомити учнів із видами макаронних виробів їхнім значенням у харчуванні людини із технологією запікання продуктів; навчити готувати страви з макаронних виробів; розширити знання й навички приготуван
14451. Приготування страв із молока й молочних продуктів 52 KB
  Тема. Приготування страв із молока й молочних продуктів. Мета: ознайомити учнів із видами молочних продуктів їхнім значенням у харчуванні людини навчити готувати страви з молочних продуктів подавати й оформлювати страви сервірувати стіл до вечері; формувати чіткість...
14452. Показники та методи фундаментального аналізу 327 KB
  Головною метою та результатом фундаментального аналізу є визначення «дійсної», справедливої ціни товару, що досліджується. Визначення справедливої ціни потребує не тільки багато зусиль, наявності правильної моделі визначення вартості, але і своєчасної та якісної інформації.
14453. Вирощування плодоягідних рослин 222 KB
  Тема. Вирощування плодоягідних рослин. Мета: ознайомити учнів з особливостями вирощування та догляду за плодоягідними кущами; виховувати бережливе ставлення до обладнання та інструментів; розвивати логічне мислення моторику рухів. Основні поняття: плодівництво пл...
14454. Енергетичні засоби у сільському господарстві 112 KB
  Тема. Енергетичні засоби у сільському господарстві. Мета : ознайомити учнів з енергетичними засобами які використовуються в с/г підприємствах класифікацією найбільш поширених тракторів як основних засобів енергетики мобільних процесів виховувати бережливе ставле
14455. Професійна діяльність людини та її вибір. Професіограма 56.5 KB
  Тема: Професійна діяльність людини та її вибір. Професіограма. Мета: Навчальна: сформувати знання про види професій. Виховна: виховувати в повагу до людей всіх професій. Розвиваюча: розвивати у школярів світогляд професійне спрямування. Надати широку інформацію п
14456. Технічне конструювання. Поняття про розрізи та перерізи 40 KB
  Тема: Технічне конструювання. Поняття про розрізи та перерізи. Мета: Навчальна: ознайомити з особливостями виконання розрізу та перерізу навчити виконувати і читати креслення предмета при виконанні розрізів та перерізів; Виховна: виховувати відпов
14457. Оздоблення виробів з металів 53 KB
  ТЕМА ЗАНЯТТЯ: Оздоблення виробів з металів. МЕТА ЗАНЯТТЯ: Навчальна: Сформувати знання про основні види оздоблення металів. Виховна: виховувати культуру праці працелюбність бережне відношення до майна; Розвиваюча: розвивати технічне мислення сприяти розвитку
14458. Робоче місце фрезерувальника. Підготовка верстата НГФ-110 Ш4 до роботи. Фрезерування плоских поверхонь, пазів 67.5 KB
  Тема. Робоче місце фрезерувальника. Підготовка верстата НГФ110 Ш4 до роботи. Фрезерування плоских поверхонь пазів. Мета:ознайомити учнів з технологічним процесом утворення плоских поверхонь уступів виступів канавок навчити виконувати плоскі поверхні на фрезерному в...