4568

Использование параллелизма процессора для повышения эффективности программ

Лабораторная работа

Информатика, кибернетика и программирование

Использование параллелизма процессора для повышения эффективности программ Цель работы: научить студента самостоятельно разрабатывать максимально эффективные программы. Материал для изучения. Рассмотрим задачу умножения двух n ...

Русский

2012-11-22

35.5 KB

6 чел.

Использование параллелизма процессора для повышения эффективности программ

Цель работы: научить студента самостоятельно разрабатывать максимально эффективные программы.

Материал для изучения.

Рассмотрим задачу умножения двух n n квадратных  матриц: С = АВ.

Элементы матриц хранятся по строкам, а именно сначала хранятся элементы первой строки, затем второй и т.д.

Таким образом. Последовательнее элементы строки матрицы лежат друг за другом и доступ к ним будет максимально быстрым. Так как стратегия предвыборки элементов в кэш (т.е. чтение каждый раз целого блока оперативной памяти, равного по размеру строке кэша) себя полностью оправдывает. С другой стороны, последовательные элементы столбца матрицы лежат на расстоянии n* sizeof(double) байт друг от друга и доступ к ним будет максимально медленным (поскольку строка кэш-памяти существенно меньше расстояния между элементами).

Вычислим произведение матриц несколькими способами.

1. Стандартный способ. Цикл проведем по строкам матрицы.

для всех   m = 1, 2,…,n

для всех i = 1, 2,,n

 вычислить

В цикле по j (вычисление суммы) элементы одной строки матрицы А (к которым быстрый доступ) будут использованы многократно (в цикле по i), элементы же столбцов матрицы В (к которым относительно медленный доступ) повторно (в цикле по i) не используются. Тем самым при доступе к элементам В кэш-память  практически ничего не дает.

2. Цикл по столбцам матрицы.

для всех   m = 1, 2,…,n

для всех i = 1, 2,…,n

 вычислить

В цикле по j  (вычисление суммы) элементы матрицы А повторно (в цикле по i) не используются. Элементы же столбцов матрицы В используются много кратно (в цикле по i). Кэш память ускоряет доступ к элементам А за счет предвыборки подряд идущих элементов, и ускоряет доступ к элементам В, если столбец целиком поместился в кэш память (тогда в цикле по i обращение к элементам В в оперативной памяти будет только на первом шаге). Отметим, что если размер кэш памяти недостаточен (например n велико), то этот способ может оказаться хуже предыдущего, т.к. ухудшился способ доступа  к А и не получен выигрыш при доступе к В.

3. Третий метод.

Цикл проведем по N N, N=10 блокам матрицы С, внутри блока идем по столбцам.

для всех  bm = 1, 1+N, 1+2N, … ,    bm < n 

для всех bi = 1, 1+N, 1+2N, … ,    bi < n 

 для всех m= bm, bm+1, …, bm+N-1, m<n

   для всех i=bi, bi+1, … , bi+N-1, i < n

   вычислять  

В этом случае большой выигрыш в скорости получаем в том случае если используемые в циклах по m, i, j N строк матрицы А и N столбцов матрицы В поместились в кэш память. Если n  настолько велико что даже один столбец матрицы В не поместился целиком в кэш, то этот способ может оказаться хуже самого первого.

4.  Зададим параметр N таким, что n делится на N нацело. Тогда всякая матрица М может быть представлена:


Где  Mij – NN матрица, k=n/N. Тогда каждый блок Cim произведения С=АВ матриц А и В может быть вычислен через блоки матриц А и В.

 

В вычислении произведения NN матрица матриц Aij  и Bjm участвует только подмножество их N2 элементов матриц А и В . При небольшом N  это подмножество полностью поместится в кэш-памяти и каждое слагаемое послежней суммы быдет вычислено максимально быстро.

5. В предыдущих вариантах преимущества кэш-памяти почти уже были исчерпаны. Для получения дальнейшего прироста производительности вспомним о конвейерной организации процессора (современные процессоры имеют конвейер инструкций, достаточно глубокий). Для его заполнения длина линейного участка программы должна быть как минимум больше глубины конвейера (желательно в несколько раз ). Во всех предыдущих вариантах в самом внутреннем цикле (по j) находится оператор языка, который, в зависимости от целевого процессора, транслируется компилятором в 7 … 12 инструкций (включая операторы обслуживания цикла).  Для увеличения линейного участка программы в предыдущем варианте реализуем цикл следующим образом:

За один проход цикла по j будем вычислять сразу 4 элемента матрицы С – ci,m, ci,m+1, ci+1,m, ci+1,m+1. Поскольку при их вычислении используются повторяющиеся элементы матриц А и В, то также появляются дополнительные резервы для ускорения работы за счет оптимизации компилятора и кэш памяти.

Задание к лабораторной работе.

1. Запрограммировать алгоритмы умножения матриц.

2. Повести эксперименты на ЭВМ  с разными процессорами.

3. Построить таблицу соотношения скорости работы различных алгоритмов умножения матриц. (матрицы брать размерностью 10001000, 50005000, 1000010000 ). В таблицу заносить значения: отношения времени работы первого варианта к времени работы каждого из пяти вариантов.

4. Написать отчет.

5. Защитить у преподавателя.

Дополнительная литература:

Богачёв К.Ю. Основы параллельного программирования / К.Ю. Богачев. – М.: БИНОМ. Лаборатория знаний, 2003. – 342 с.


 

А также другие работы, которые могут Вас заинтересовать

2980. Управление качеством 210 KB
  Управление качеством Сущность управления качеством Объективные предпосылки изменения отношения к качеству и эволюция управления качеством Вопросы качества продукции и его повышения всегда находились в центре общественного внимания. Изменение...
2981. Пральна машина Рига-13. Характеристика, дефекти, ремонт 213.38 KB
  Перші електричні пральні машини серійно стали випускатись в Італії у 1945 р., коли брати Фумагаллі наладили випуск електричної пральної машини CANDY. Можливо, настільки пізня поява електричних пральних машин ( на декілька десятків років пізніш...
2982. Исследование трёхфазной цепи, соединённой звездой 202.5 KB
  Исследование трёхфазной цепи, соединённой звездой. Цель работы Исследовать соотношение между токами и напряжениями в электрических цепях переменного тока, содержащих индуктивно связанные элементы, экспериментально определить параметры катушек и коэф...
2983. Межфирменная интеграция и формирование ФПГ (финансово-промышленных групп) 195.5 KB
  Межфирменная интеграция и формирование ФПГ (финансово-промышленных групп). Формы и особенности международной интеграции производства. Базовые стратегии развития бизнеса. Межфирменная интеграция и диверсификация производства. Формы и...
2984. Основы технической диагност 1.03 MB
  Построить схему проверки работоспособности фрагмента устройства. Исследуя данную схему фрагментоустройства определим среднюю точку, необходимую для начала проверки технического состояния блоков. Для этого построим таблицу неисправностей в которой ко...
2985. Ревизия и контроль 239 KB
  Краткий курс лекций  дисциплины «Ревизия и контроль» для специальности 2 – 25 01 31 «Финансы», 2 – 25 01 31 – 02 «Налоги и налогообложение»  охватывает учебный  план рабочей  программы по предмету в полном объеме. ...
2986. АДАМ СМИТ И ЕГО ЭКОНОМИЧЕСКИЕ ИДЕИ 76 KB
  Исторические условия формирования идей Смита. Своего высшего развития классическая буржуазная политическая экономия достигла в трудах британских ученых Адама См...
2987. Административное правонарушение 94.5 KB
  Отрицательное отношение к требованиям законов является источником правонарушений. Правонарушение - это безразличное отношение к законам, невыполнение их требований, полное отрицание законов как регуляторов общественных отношений. Проблема отрицания ...
2988. Теории личности в зарубежной психологии 108.5 KB
  Теория  ролей С.57. Представителей гуманистической психологии можно частично отнести к интерперсональным теориям, которые усматривают механизмы развития личности  в межперсональных отношениях. Например, Олпорт заявляет, что личность –...