4580

Вивчення прискорення вільного падіння тіла за допомогою фізичного маятника

Лабораторная работа

Физика

Вивчення прискорення вільного падіння тіла за допомогою фізичного маятника Мета роботи. Вивчити вільні незатухаючі коливання фізичного маятника і визначити прискорення вільного падіння. Теоретичні відомості. Коливання - це процес, який п...

Украинкский

2012-11-22

103 KB

120 чел.

Вивчення прискорення вільного падіння тіла за допомогою фізичного маятника

1. Мета роботи.

Вивчити вільні незатухаючі коливання фізичного маятника і визначити прискорення вільного падіння.

2. Теоретичні відомості.

Коливанням – це процес, який повторюється з часом. В механіці прикладом коливань є коливальний рух маятників, який являє собою періодичне відхилення маятника від положення рівноваги то в один, то в протилежний бік. При цьому відбуваються також періодичні зміни швидкості, прискорення, кінетичної та потенціальної енергії маятника.

Коливання, які відбуваються тільки під дією внутрішніх сил коливальної системи, називаються вільними. Якщо при цьому в системі відсутні сили тертя, то енергія системи з часом не змінюється і коливання є незгасаючими.

Розглянемо вільні незгасаючі коливання фізичного маятника. Фізичним маятником називається тіло довільної форми, здатне здійснювати коливання під дією сили тяжіння навколо нерухомої горизонтальної осі ОО', яка не проходить через центр тяжіння цього тіла С (рис. 1).

Рис. 1.

При відхиленні маятника від положення рівноваги виникає обертальний момент М сили тяжіння, який намагається повернути маятник до положення рівноваги:

,

де m - маса тіла, g- прискорення вільного падіння, l- відстань між точкою підвісу О та центром тяжіння С, α- кутове зміщення маятника. Знак “-“ вказує на те, що повертаючий момент напрямлений проти кутового переміщення α.

При малих кутах відхилення , тому обертаючий момент дорівнюватиме:

                                                      (1)

Якщо дією моментів сил тертя знехтувати, то з основного рівняння динаміки обертального руху:

,                                                          (2)

де І- момент інерції тіла відносно осі 00', а ε – кутове прискорення, яке дорівнює:

дістанемо рівняння руху фізичного маятника:

.

Запишемо це рівняння в іншій формі:

                                                  (3)

Величина  має розмірність циклічної частоти в квадраті, тому введемо позначення:

                                                        (4)

Тоді остаточно дістанемо диференціальне рівняння вільних незгасаючих коливань фізичного маятника:

                                                (5)

Розв'язком цього рівняння є функція

,                                                (6)

де α(t) - кутове зміщення маятника відносно положення рівноваги в довільний момент часу; αm - амплітуда коливань, модуль максимального зміщення від положення рівноваги. Амплітуда вільних незгасаючих коливань визначається початковими умовами; ω0 - власна циклічна частота, це кількість коливань за 2π секунд. Як видно з рівняння (4) власна частота визначається параметрами коливальної системи; величину, що стоїть під знаком косинуса називають фазою коливань:

,

де φ0 - фаза коливань в початковий момент часу (початкова фаза).

Як видно з рівняння (6), вільні незгасаючі коливання фізичного маятника є періодичними і відбуваються за законом косинуса (синуса) тобто є, гармонічними. Період вільних незгасаючих коливань (час одного повного коливання) Т0 визначається за формулою

,                                                          (7)

а з врахуванням (4) період малих вільних коливань фізичного маятника дорівнюватиме:

                                                (8)

Графік вільних незгасаючих коливань представлений на рис. 2.

Рис. 2.

4. Методика вимірювання.

Для визначення прискорення вільного падіння (табличне значення ) в роботі спостерігають незгасаючі коливання фізичного маятника і визначають час t та кількість коливань маятника N за цей час. З формули періоду коливань (8) прискорення вільного падіння дорівнюватиме:

                                                         (9)

Період коливань визначається за формулою

                                                       (10)

В роботі фізичним маятником є металевий однорідний стержень, який коливається навколо осі, що проходить через його кінець, тому:

,                                                        (11)

де  - довжина стержня.

Момент інерції стержня відносно осі ОО´ за теоремою Штейнера дорівнює

,

де  - момент інерції стержня відносно осі, що проходить через центр тяжіння

Тоді момент інерції відносно осі 00' дорівнюватиме:

                                           (12)

Підставимо формули (10), (11), (12) в формулу (9) і отримаємо розрахункову формулу для прискорення вільного падіння:

                                                 (13)

5. Порядок виконання роботи.

1. Виміряти лінійкою довжину стержня lс.

2. Відхилити маятник від положення рівноваги на кут α < 10° і відпустити.

3. Пропустити (1-2) коливання та ввімкнути секундомір.

4. Відрахувати (20 – 30) коливань і вимкнути секундомір. Визначити час цих коливань. Провести вимірювання 3 рази і результати занести в таблицю. За середніми значеннями виміряних величин визначити середнє значення прискорення вільного падіння за формулою (13)

N

T, c

Примітки

1

2

3

5. Визначити відносну похибку непрямого вимірювання прискорення вільного падіння за формулою:

, ,

а також абсолютну похибку непрямого вимірювання за формулою: . Результати занести в таблицю.

6. Контрольні запитання.

1. Який рух називається коливальним?

2. Які коливання називаються вільними? В якому випадку вільні коливання є незгасаючими?

3. Які коливання називаються гармонічними, чи є вони періодичними?

4. Що являє собою фізичний маятник?

5. Запишіть і поясніть диференціальне рівняння вільних незгасаючих коливань фізичного маятника.

6. Запишіть рівняння вільних незгасаючих коливань фізичного маятника. Дайте визначення амплітуди, фази, частоти та періоду коливань.

7. В чому полягає методика вимірювання прискорення вільного падіння в даній роботі?

8. Які величини в роботі визначаються прямими, а які непрямими вимірюваннями?

9. За якими формулами в роботі визначаються прискорення вільного падіння та похибка його вимірювання?

7. Прилади та обладнання.

Фізичний маятник зі шкалою, секундомір, лінійка.

8. Література

Кучерук І.М. та інші. "Загальний курс фізики". Київ, "Техніка", 1999 - т. 1, §§10.1,10.2,10.5.

Савельев И.В. "Курс общей физики ". М., "Наука", 1982 - т. 1, §§ 49, 52, 53, 54.

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

t

T0

x


 

А также другие работы, которые могут Вас заинтересовать

25942. Здания и сооружения из монолитного железобетона 31 KB
  Монолитные конструкции несущего остова здания представляют собой неразрезные элементы наружных и внутренних несущих стен колонн ригелей и перекрытий жестко связанных между собой в пространственную систему работающую под нагрузкой как единое целое. Здания из монолитного железобетона разделяются на монолитные и сборномонолитные и выполняются по следующим конструктивным схемам: монолитные несущие и ограждающие конструкции; монолитный каркас колонны и перекрытия наружные и внутренние стены сборные или каменных материалов; монолитные...
25943. Больше пролетные покрытия – плоскостные покрытия 68.5 KB
  Плоскостными покрытиями называют конструкции работающие только в одной вертикальной плоскости проходящей через опоры; к ним относятся балки фермы рамы арки; к ним следует отнести и те конструкции которые можно разрезать вертикальными плоскостями вдоль пролета на отдельные элементы причем каждый элемент независимо от другого будет тоже работать как плоскостной. К распорным плоскостным покрытиям относят своды арки рамы.
25944. Большепролетные покрытия - пространственные конструкции 561 KB
  Большепролетные покрытия пространственные конструкции. Все конструктивные системы покрытия можно рассматривать с двух позиций которые имеют особое влияние на архитектурный облик всего сооружения. В отличие от плоскостных пространственные покрытия работают одновременно в двух или нескольких направлениях К ним относятся: перекрестные системы оболочки складки висячие покрытия пневматические конструкции и др. Пространственные покрытия выполняют из плоскостных элементов монолитно связанных между собой и работающих как цельная конструкция...
25945. Большепролетные покрытия – висячие конструкции 67.5 KB
  Большепролетные покрытия – висячие конструкции. Висячие конструкции представляют собой один из наиболее экономичных видов покрытий благодаря тому что материал несущих конструкций работает исключительно на растяжение и несущая способность конструкций используется полностью. б ужесточенными считают такие висячие системы жесткость которых препятствует возникновению недопустимых кинематических и упругих деформаций Сюда относятся в основном висячие предварительно напряженные оболочки.
25947. Большое распространение в зарубежной и отечественной практике получили также висячие тонколистовые системы - мембранные покрытия 76.5 KB
  В некоторых случаях вместо сплошной мембраны покрытие образуется из отдельных не соединяемых друг с другом тонких стальных лент. Сплошное мембранное покрытие успешно применено для универсального стадиона на проспекте Мира в Москве размеры в плане которого достигают 183x224 м рис.
25949. Сводчатые покрытия проектируются, как правило, из сборных железобетонных элементов для прямоугольных в плане однопролетных или многопролетных зданий 35.5 KB
  По продольным краям вдоль образующей своды могут опираться на колонны стены или непосредственно на фундаменты.1 Своды с затяжками Рисунок 7.2 Своды без затяжек 7. Своды призматического полигонального очертания состоят из прямолинейных участков вписанных в дугу указанных выше кривых.
25950. Городские транспортные сооружения 34 KB
  Путепроводы и эстакады можно отнести ко второй группе сооружений. Эстакады применяют в следующих случаях: на пересечениях двух и более транспортных магистралей для увеличения пропускной способности улиц для пропуска скоростных автомагистралей над городской застройкой независимо от сложившейся сети улиц на подходах к большим мостам вместо высоких насыпей на подходах к местам скопления большого числа автомобилей вокзалам аэродромам гостиницам стадионам для уширения набережных и организации движения вдоль рек на косогорах болотах и...