4583

Використання методу Монте-Карло для вирішення стохастичних і детермінованих задач

Лабораторная работа

Математика и математический анализ

Використання методу Монте-Карло для вирішення стохастичних і детермінованих задач. Мета роботи:Ознайомитись з методом статистичних випробувань (метод Монте-Карло), та його застосуванням для вирішення стохастичних та детермінованих задач. Метод...

Украинкский

2012-11-22

80 KB

16 чел.

Використання методу Монте-Карло для вирішення стохастичних і детермінованих задач.

Мета роботи: Ознайомитись з методом статистичних випробувань (метод Монте-Карло), та його застосуванням для вирішення стохастичних та детермінованих задач.

Метод Монте-Карло

Метод Монте-Карло, як сказано у Вікіпедії, - це загальна назва групи чисельних методів, що базуються на одержанні великої кількості реалізацій стохастичного (випадкового) процесу, який формується у той спосіб, щоб його імовірнісні характеристики співпадали з аналогічними величинами задачі, яка вирішується.

Отже, метод Монте-Карло - це метод імітації для імовірнісного відтворення реальних явищ. Він об'єднує аналіз чутливості (сприйнятливості) і аналіз розподілення ймовірностей вхідних змінних. Цей метод дає змогу побудувати модель, мінімізуючи кількість даних, що використовуються в моделі. Побудова моделі починається з визначення функціональних залежностей у реальній системі. Після чого можна одержати кількісне рішення, використовуючи теорію ймовірності й таблиці чи генератори випадкових чисел.

Метод Монте-Карло широко використовується у більшості випадків імітаційного моделювання на ЕОМ.

Проілюструємо суть методу Монте-Карло відносно простими прикладами.

 

Приклад 1

Нехай потрібно оцінити середній час безвідмовної роботи системи, зображеної на рис. 1.1.

Рис. 1.1. Блочна структура системи.

 

Система виконує свою функцію, якщо працюють послідовності блоків: 1,2,5,7; 1,3,5,7; 1,4,6,7.

Певні блоки можуть відмовити. Кожен блок характеризується часом безвідмовної роботи . Нехай задана густина розподілу імовірності . Яка надійність системи в цілому?

Розглянемо випадкову величину

де  - час безвідмовної роботи системи.

У одному досліді розігруються значення всіх , відповідно до .

Використовуючи отримані реалізації  , по вищенаведеній формулі обчислюємо реалізацію . Один дослід дає одну реалізацію (одне вибіркове значення) . Проводимо М дослідів (випробувань), отримуємо “статистичний” матеріал (вибірку). Беремо середнє арифметичне часу безвідмовної роботи системи  з р в якості оцінки надійності системи. При необхідності можна побудувати закон розподілу імовірності випадкової величини  у вигляді відповідної гістограми.

 

Приклад 2

Застосування методу статистичних випробувань для обчислення площі круга заданого радіусу.

Дане завдання відноситься до класу детермінованих, оскільки складно уявити собі випадкові фактори, під впливом яких площа нерухомої геометричної фігури могла б змінюватися.

Нехай круг має радіус r=5, і його центр знаходиться в точці з координатами (1,2). Рівняння відповідного кола має вигляд:

(x-1)2+(y-2)2=25.

Для вирішення завдання методом Монте-Карло впишемо круг в квадрат. Його вершини матимуть координати (-4,-3), (6,-3), (-4,7) і (6,7). Будь-яка точка всередині квадрата або на його межі повинна задовольняти нерівностям (-4<x<6) і (-3<y<7).

При вирішенні даної задачі природно виходити з того, що всі точки в цьому квадраті можуть з'являтися з однаковою імовірністю, тобто x і y розподілені рівномірно з густиною імовірності: 

Провівши деяку кількість випробувань (тобто отримавши множину випадкових точок, що належать квадрату), підрахуємо число точок, що потрапили всередину круга або на коло. Якщо вибірка складається із n спостережень і mточок потрапили всередину круга або на коло, то оцінку площі круга можна отримати із співвідношення:

.

У таблиці приведені оцінки Sкр, отримані для різних значень n, причому для кожного виконувалося 5 прогонів (точне значення Sкр = 78,54 см):

Таблиця 1.1 Результати оцінки площі круга методом статистичних випробувань

 

Номер

прогону

Оцінка площі круга (Sкр)

Число випробувань (n)

100

200

1000

5000

10000

1

78

79,5

78

79,5

78,2

2

70

77

79

77,88

78,8

3

81

77,3

80,2

79,5

79,1

4

70

79,12

79,29

78,22

78,6

5

79

77,72

77,76

79

78,26

Середнє

75,6

78,3

78,85

78,23

78,59

Дисперсія

21,84

0,9982

0,789

0,44

0,11

 

Прогони відрізняються один від одного послідовностями випадкових чисел, з яких формувалися координати точок.

 

Завдання.

Реалізувати в програмному середовищі MATLAB® метод Монте-Карло:

  1.  для обчислення площі круга заданого радіусу (методом статистичних випробувань);
  2.  для блочної структури, наведеної на рис. 1.1. Обчислити час безвідмовної роботи системи, якщо густина розподілу імовірності  носить рівномірний та нормальний характер.


 

А также другие работы, которые могут Вас заинтересовать

21708. Модуль Жизненный цикл интеллектуальной системы 147.5 KB
  2] Этап 2: Разработка прототипной системы [1.4] Этап 4: Оценка системы [1.5] Этап 5: Стыковка системы [1.
21709. Модуль Методы представления знаний: Нечеткая логика 192 KB
  Математический аппарат Характеристикой нечеткого множества выступает функция принадлежности Membership Function. Обозначим через MFcx – степень принадлежности к нечеткому множеству C представляющей собой обобщение понятия характеристической функции обычного множества. Значение MFcx=0 означает отсутствие принадлежности к множеству 1 – полную принадлежность. Так чай с температурой 60 С принадлежит к множеству 'Горячий' со степенью принадлежности 080.
21711. Оценка вероятностей возможных последствий от нарушений электроснабжения потребителей 181.5 KB
  Оценка вероятностей возможных последствий от нарушений электроснабжения потребителей Для решения широкого класса задач эксплуатации и проектирования с учётом фактора надёжности необходимо определение вероятностей возникновения возможных последствий от нарушения электроснабжения потребителей которые сводятся к следующим: вероятность возникновения катастрофических и аварийных ситуаций исследование которых необходимо для нормирования надёжности электроснабжения; вероятность возникновения отдельных составляющих ущерба их величина и...
21712. ИСПЫТАНИЯ НА НАДЕЖНОСТЬ ЭМС. КОНТРОЛЬНЫЕ ИСПЫТАНИЯ 2.49 MB
  Показатели надежности экспериментальными методами могут быть получены по результатам либо испытаний – специальных или совмещенных либо наблюдением за функционированием объекта в условиях эксплуатации. Методы испытаний организуются специально с целью определения показателей надежности объем их обычно заранее планируется условия функционирования объектов устанавливаются исходя из требований оценки конкретных показателей. Показатели надежности таких объектов оцениваются в основном либо по результатам совмещенных испытаний при которых...
21713. СТАТИСТИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ, АНАЛИЗА И КОНТРОЛЯ НАДЕЖНОСТИ 358.5 KB
  Сбор информации об отказе элементов технических систем В общем комплексе мероприятий по обеспечению надёжности любого изделия сбор статистической информации об отказах и оценка показателей надёжности в условиях эксплуатации являются последним заключительным этапом. При этом появляется возможность оценить реальные значения показателей надежности и следовательно оценить эффективность мероприятий по обеспечению надёжности на всех этапах – проектирование производство испытания монтаж эксплуатация. Поэтому особое значение приобретает вопрос...
21714. ИСПЫТАНИЯ НА НАДЕЖНОСТЬ ЭМС. ОПРЕДЕЛИТЕЛЬНЫЕ ИСПЫТАНИЯ 3.06 MB
  При определительных испытаниях могут оцениваться законы распределения отказов и их параметры. При определительных испытаниях могут оцениваться законы распределения отказов и их параметры. Однако существует универсальный план испытаний позволяющий по единой методике проводить статистическую оценку величины Р для изделий с любым законом распределения. Полученные данные по отказам изделий в результате испытаний или по данным эксплуатации подвергаются статистической обработке для получения следующих результатов: определения вида функции...
21715. Планирование эксперимента при ускоренных испытаниях электрических машин 102 KB
  ТЕМА № 2 Регрессионный анализ установившихся режимов электрической системы Для этой цели целесообразно использование регрессионного моделирования сложной системы. При этом с использованием имеющихся программ расчета установившегося режима на ЭВМ проводятся целенаправленные исследования в результате которых получаются регрессионные модели для анализа или управления. Такие модели могут быть получены при регрессионном анализе или методом планирования многофакторного эксперимента МПЭ. При этом для построения линейных моделей используется полный...
21716. Законы распределения отказов 2.99 MB
  Законы распределения отказов Случайной называется величина которая в результате испытаний может принять то или иное значение причем заранее неизвестно какое именно. Если задан ряд распределений вероятностей для значений случайной величины X то математическое ожидание определяется по формуле Показателями характеризующими степень рассеяния случайной величины около своего математического ожидания являются дисперсия и среднее квадратическое отклонение: Для более полного описания случайных величин вводятся понятия функции распределения...