45869

Абразивные материалы и техническая характеристика абразивных инструментов. Особенности режима шлифования

Доклад

Производство и промышленные технологии

Особенности режима шлифования. АБРАЗИ́ВНЫЕ МАТЕРИА́ЛЫ вещества повышенной твердости применяемые в массивном или измельченном состоянии для механической обработки шлифования резания истирания заточки полирования и т. Плоские круги прямого профиля ПП применяют для круглого наружного внутреннего и бесцентрового шлифования для плоского шлифования периферией круга и для заточки инструментов. Плоские круги с двухсторонним коническим профилем 2П применяют для вышлифовывания зубьев шестерен и шлифования резьбы.

Русский

2013-11-18

42.39 KB

3 чел.

105.Абразивные материалы и техническая характеристика абразивных инструментов. Особенности режима шлифования. АБРАЗИ́ВНЫЕ МАТЕРИА́ЛЫ—вещества повышенной твердости, применяемые в массивном или измельченном состоянии для механической обработки (шлифования, резания, истирания, заточки, полирования и т. д.) других материалов. Естественные абразивные материалы — кременьнаждакпемза, корунд,гранаталмаз и др.; искусственные — электрокорундмонокорундкарбид кремния,боразонэльбор, синтетический алмаз и др.

Абразивные инструменты - это режущие инструменты, изготовленные из зерен шлифовальных материалов, сцепленных между собой связующим веществом (связкой) и разделенных друг от друга порами. Абразивные инструменты на жесткой основе характеризуются формой и размерами, шлифовальным материалом, его зернистостью, связкой, твердостью, точностью, неуравновешенностью, а алмазные и эльборовые инструменты также и концентрацией зерен в рабочем слое.Форма и размеры. Геометрические параметры абразивных инструментов задаются станком, на котором предполагается их использование, а также формой, размерами обрабатываемых поверхностей и характером движений инструментов.

Шлифовальные круги (рис. 13.1, а) применяются в том случае, когда основное движение вращательное. Поэтому они представляют собой различные по форме тела вращения. Кратко рассмотрим области применения кругов основных форм исполнения.

Плоские круги прямого профиля ПП применяют для круглого наружного, внутреннего и бесцентрового шлифования, для плоского шлифования периферией круга и для заточки инструментов. Плоские круги с двухсторонним коническим профилем 2П применяют для вышлифовывания зубьев шестерен и шлифования резьбы. Плоские круги с выточкой ПВ и с двухсторонней выточкой ПВД позволяют помещать в выточках зажимные фланцы, а благодаря этому, совмещать круглое шлифование с подрезкой торца. Эти круги применяют также в качестве ведущих кругов при бесцентровом шлифовании.

Цилиндрические и конические круги-чашки ЧЦ и ЧК применяют для заточки инструментов и для плоского шлифования торцом.

Тарельчатые круги Т применяют для заточки и доводки передних граней фрез, обработки зубьев долбяков и других инструментов.Алмазные круги (рис. 13.1, 6) бывают плоского прямого профиля, чашечные, тарельчатые, дисковые и другие и применяются для заточки и доводки твердосплавных инструментов, а также для шлифования труднообрабатываемых и резки неметаллических материалов.

Эльборовые круги имеют формы, подобные алмазным кругам. Их применяют для шлифования закаленных сталей ( 60 HRCЭ), чистовой заточки инструментов из быстрорежущих сталей, при чистовом шлифовании резьб, а также для обработки жаропрочных и коррозионно-стойких сталей.Размеры шлифовальных кругов следует брать возможно большими, так как в этом случае улучшаются условия шлифования и снижается стоимость обработки. При этом верхний предел размеров круга ограничивается конструкцией и размерами станка, а иногда размерами и формой обрабатываемой заготовки. Так, например, при шлифовании отверстий диаметр круга должен быть не более 0,7...0,9 диаметра обрабатываемого отверстия.

Шлифовальные головки (рис. 13.1, в) - это шлифовальные круги небольшого диаметра (3...40 мм). Такие круги приклеивают к стальным хвостовикам и применяют для внутреннего шлифования и для ручной зачистки заготовок с помощью шлифовальных машин.

Шлифовальные бруски (рис. 13.1, г) используют в инструментах, совершающих возвратно-поступательное движение: при слесарных работах, а также при хонинговании или суперфинишировании. В последних случаях бруски закрепляют в специальных стальных головках.

Шлифовальныесегменты (рис. 13.1, д) применяют для плоского шлифования. В этом случае шлифовальный круг состоит из нескольких сегментов, закрепленных в головке или патроне. Шлифовальные шкурки - это абразивные инструменты на гибкой (бумага, ткань, металлическая лента) или комбинированной основе (бумага и ткань) с наклеенным на нее слоем шлифовального материала, закрепленного связкой. Шкурки выпускают в виде листов, лент и применяют для ручной и машинной зачистки и отделки деталей.

Особенности шлиф.Бесцентровое шлифование — один из наиболее производительных видов абразивной обработки, широко распространенный в крупносерийном и массовом производстве.
Жесткость технологической системы станок — шлифовальный круг - деталь — ведущий круг при бесцентровом шлифовании в 1,5—2 раза выше, чем жесткость системы при круглом шлифовании в центрах. В связи с этим при бесцентровом шлифовании режимы резания соответственно повышаются в 1,5—2 раза и значительно облегчается обработка нежестких заготовок (тонких валов, распылителей и т. д.). Кроме того, точность формы и концентричность шлифованной поверхности при бесцентровом шлифовании также выше, чем при шлифог вании в центрах. 
Процессы резания и формообразования заготовок на бесцентрово-шлифовальных станках осуществляются шлифо: вальным кругом, вращающимся с заданной скоростью. При этом заготовку не закрепляют в центрах или патроне, как на обычных центровых шлифовальных станках, а базируют по обрабатываемой или окончательно обработанной поверхности. Заготовка получает вращение от ведущего круга, скорость которого в 60—100 раз меньше окружной скорости шлифовального круга. Гладкие цилиндрические заготовки шлифуют методом продольной подачи, а короткие или ступенчатые валики — методом врезания. При шлифовании заготовок с продольной подачей применяют подающие механизмы типа валковых, которые осуществляют непрерывную подачу заготовок в зону шлифования.
При врезном шлифовании ведущий круг, нож и заготовку после обработки отводят от шлифовального круга и устанавливают новую заготовку. Этот метод сравнительно легко может быть автоматизирован за счет автоматической загрузки рабочей зоны станка, активного контроля обработанных заготовок и автоматической правки кругов. 
Ведущий круг или направляющую линейку при врезном наружном шлифовании и прижимной ролик при врезном внутреннем шлифовании устанавливают под углом а = 30', Очень малая продольная подача при таком значении угла обеспечивает плотный прижим заготовки к упору. При врезном шлифовании заготовка базируется на ноже и ведущем круге или на жестких опорах (башмаках), а положение заготовки определяет торцовая опора.
Возможна Также обработка ступенчатых валиков методом поперечной подачи. В процессе обработки контролируют размер одной шейки, остальные получают за счет выправленного по копиру на соответствующие размеры шлифовального круга.


 

А также другие работы, которые могут Вас заинтересовать

37895. ОПРЕДЕЛЕНИЕ МОЛЯРНОЙ МАССЫ И ПЛОТНОСТИ ГАЗА МЕТОДОМ ОТКАЧКИ 140 KB
  10 ЛАБОРАТОРНАЯ РАБОТА № 124 ОПРЕДЕЛЕНИЕ МОЛЯРНОЙ МАССЫ И ПЛОТНОСТИ ГАЗА МЕТОДОМ ОТКАЧКИ 1. Цель работы Ознакомление с одним из методов определения молярной массы и плотности газа. Теоретическая часть Состояние некоторой массы газа определяется значениями трёх параметров: давлением P под которым находится газ его температурой T и объёмом V.1 представляет собой уравнение состояния данной массы газа.
37896. ОПРЕДЕЛЕНИЕ ТЕПЛОЁМКОСТИ ТВЁРДЫХ ТЕЛ 440.5 KB
  Если температура калориметра с исследуемым образцом очень медленно увеличивать от начальной T0 на ∆T то энергия электрического тока пойдет на нагревание образца калориметра: 2.18 где I и U ток и напряжение нагревателя τ время нагревания m0 и m массы калориметра и исследуемого образца c0 c удельные теплоёмкости калориметра и исследуемого образца ∆Q потери тепла в теплоизоляцию калориметра и в окружающее пространство.18 количества теплоты расходованной на нагрев калориметра и потери теплоты в окружающее...
37897. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ГАЗА МЕТОДОМ НАГРЕТОЙ НИТИ 268.5 KB
  12 ЛАБОРАТОРНАЯ РАБОТА № 127 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ГАЗА МЕТОДОМ НАГРЕТОЙ НИТИ Цель работы Изучение теплопроводности в газах и определение коэффициента теплопроводности воздуха. В твердых телах распространение тепла может происходить как путем теплопроводности так и путем конвекции или того и другого способа одновременно. Основным законом теплопроводности является закон Фурье который в одномерном случае распространения тепла в одном направлении пусть вдоль оси х имеет вид:...
37898. ИЗУЧЕНИЕ ПРИНЦИПА РАБОТЫ ТУННЕЛЬНОГО ДИОДА 3.81 MB
  Если полная энергия частицы Е U0 то с классической точки зрения частица может двигаться либо в области I где х 0 либо в области III где х d. Частица полная энергия которой меньше высоты потенциального барьера U0 не может с классической точки зрения перейти барьер из области I в область III. Волновая функция в этом случае отлична от нуля и в области II даже при значениях Е U0.1 для области II...
37899. Исследование космического излучения 1.03 MB
  Изучение поглощения космического излучения в свинце9 3. Изучение углового распределения интенсивности космического излучения.12 Лабораторная работа № 88 Исследование космического излучения 1. Цель работы 1 изучение зависимости интенсивности космического излучения от толщины пройденных им свинцовых пластин; 2 проверка феноменологической формулы зависимости интенсивности космического излучения от угла наблюдения.
37900. ИЗУЧЕНИЕ ПРОБЕГА -ЧАСТИЦ В ВОЗДУХЕ 568.16 KB
  Методические указания знакомят студентов с явлением радиоактивности и с механизмами потери энергии электронов при их прохождении через вещество. Студентам предоставляется возможность эксперементально исследовать зависимость интенсивности лучей от толщины слоя воздуха и определить линейный коэффициент поглащения а также оценить верхнюю границу энергии спектра и выявить наиболее важный механизм потерь энергии электронов при их движении в воздухе. Оценить верхнюю границу энергии спектра и выявить наиболее важный механизм...
37901. Изучение явления внешнего фотоэффекта 70.5 KB
  Контрольные вопросы8 Список литературы8 Лабораторная работа № 93 Изучение явления внешнего фотоэффекта 1. Цель работы Снятие вольт амперной характеристики внешнего фотоэффекта изучение законов внешнего фотоэффекта определение постоянной Планка. Типичная вольт амперная характеристика фотоэффекта т. Таким образом опытным путем установлены следующие основные законы внешнего фотоэффекта: 1.
37902. Определение концентрации и подвижности носителей тока в полупроводнике методом эффекта холла 335.5 KB
  Эффект Холла 4 2. Физическая природа эффекта Холла 5 3. Контрольные вопросы 13 Список литературы 13 Лабораторная работа № 98 Определение концентрации и подвижности носителей тока в полупроводнике методом эффекта холла 1.
37903. ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА НА ПРОСТЕЙШИХ ПРЕГРАДАХ И ДИФРАКЦИОННОЙ РЕШЕТКЕ 260.5 KB
  Дифракция света на щели. Экспериментальное определение с помощью дифракции света ширины щели и размеров мельчайших круглых частиц. Дифракция света на щели Рассмотрим дифракцию в параллельных лучах дифракцию Фраунгофера на одной щели.2 и пусть b λ это условие позволяет не учитывать так называемые краевые эффекты обусловленные взаимодействием электромагнитного поля падающей световой волны с веществом щели.