45947

Чугуны: классификация, маркировка, химический состав, механические и технологические свойства, применение

Доклад

Производство и промышленные технологии

Чугуны нашли широкое применение в качестве машиностроительных материалов благодаря сочетанию высоких литейных свойств достаточной прочности износостойкости а так же относительной дешевизны. Чугуны используются для производства качественных отливок сложной формы станины станков корпуса приборов и т. В зависимости от того в какой форме присутствует углерод в сплаве чугуны подразделяются на белый серый ковкий высокопрочный и легированный обладающий особыми свойствами жаропрочностью антифрикционностью и т. Белые литейные чугуны.

Русский

2013-11-18

23.06 KB

232 чел.

1.Чугуны: классификация, маркировка, химический состав, механические и технологические свойства, применение.

Чугуны нашли широкое применение в качестве машиностроительных материалов благодаря сочетанию высоких литейных свойств, достаточной прочности, износостойкости, а так же относительной дешевизны. Чугуны используются для производства качественных отливок сложной формы (станины станков, корпуса приборов и т.д.). Чугунами называются сплавы железа с углеродом и некоторыми другими элементами(Si, Mn, S, P), причем содержание углерода в чугунах более 2,14 %. Свойства чугунов определяются металлической основой    (матрицей), а также количеством, формой и расположением в ней графитовых включений. В зависимости от того, в какой форме присутствует углерод в сплаве, чугуны подразделяются на белый, серый, ковкий, высокопрочный и легированный, обладающий особыми свойствами (жаропрочностью,  антифрикционностью и т.д.

Белые литейные чугуны. Белыми называются чугуны, в которых весь углерод  находится в связанном состоянии в виде цементитаFe3C. Из-за большого количества цементита белые чугуны имеют высокую твердость (НВ 450-550) и хрупкость, поэтому используются только для  изготовления износостойких деталей типа шаров мельниц, звездочек в галтовочных барабанах, облицовочных плит для щековых дробилок, прокатных валков с отбеленной поверхностью и т. д. В связи с  высокой  хрупкостью белые чугуны имеют очень ограниченное применение и поэтому не маркируются.

Серые литейные чугуны. Серыми называются чугуны с пластичной формой графита. Чугуны являются сплавами со сложным химическим составом, содержащими C, Si, Mn, S, P. Содержание этих элементов колеблется в следующих пределах C = 2,2 – 3,7 % ,   Si = 1-3% , Mn = 0,2-1,1%,   P = 0,12-0,3%,  S =0,02- 0,15 %.  По структуре серый чугун делится на три вида:   - серый ферритный со структурой феррит + графит, в этом чугуне весь углерод находится в виде графита;

- серый феррито - перлитный со структурой феррит + перлит + графит; в этом чугуне количество связанного графита менее 0.8%;.-серый перлитный со структурой перлит + графит; в этом чугуне количество связанного графита составляет ~ 0.8%; Наиболее высокими механическими свойствами обладает серый чугун с перлитной структурой (табл.1.1).

В обозначениях марки чугуна буквы “СЧ” обозначают “серый чугун”, а  число после букв – предел прочности при растяжении.               

Так как относительное удлинение  у серых чугунов составляет<0,3%,то маркировке оно не указывается.

Из перлитных серых чугунов наивысшими механическими свойствами обладают чугуны, модифицированные ферросилицием или силикокальцием. При модифицировании измельчаются графитовые включения, в результате достигается прочность σB  = 1000—1200 МПа.

Высокопрочные чугуны. 1. Высокопрочными называются чугуны, в которых графит имеет шаровидную форму. Получение в чугуне шаровидной формы графита достигается при модифицировании серого чугуна некоторыми химическими элементами Mq, Ca, Ce и т.д. в количестве 0,05—0,1 %. Чугун после модифицирования имеет следующий химический состав: С=3,0-3,6 %, Si =1,1--2.9 %, Mn =0.3—0.7 %, S<0.02 %, P<0.01 %. По структуре металлической основы (матрицы) высокопрочный чугун может быть ферритным, феррито – перлитным и перлитным. Шаровидный графит является менее сильным концентратором  напряжений, поэтому имеет более высокие механические свойства, чем серый чугун. Чугуны с шаровидным графитом обладают более высокой прочностью и некоторой пластичностью. Так же как и у серых чугунов, наиболее высокими свойствами обладает высокопрочный чугун с перлитной структурой.

Высокопрочный чугун  эффективно заменяет сталь во многих изделиях и конструкциях, так как обладает не только прочностью, но и пластичностью. В некоторых случаях для улучшения механических свойств, применяют термическую обработку отливок (закалку, отпуск, отжиг).

  В обозначении марки чугуна буквы «ВЧ» обозначают «высокопрочный                         чугун», а число после букв – предел прочности при растяжении σB в кг/мм2.

Ковкие чугуны.Ковкими называются чугуны, в которых графит имеет хлопьевидную форму. Такие чугуны получаются путем длительного отжига белого доэвтектического чугуна. Хлопьевидный графит, в отличие от пластинчатого, меньше снижает механические свойства  металлической основы, в следствии чего ковкий чугун обладает более высокой прочностью и пластинчатостью, чем серый чугун.

          Для обеспечения получения хлопьевидного графита после отжига исходные белые чугуны должны иметь пониженное содержание углерода и кремния. Химический состав исходного белого чугуна находится в пределах:С=2,4-2,9%  ,Si=1,0-1,6% ,Mn=0,2-1,05% ,  S<0,2%,  P<0,18.%.

 По структуре металлической основы ковкие чугуны бывают ферритными и перлитными. Перлитные ковкие чугуны имеют более высокий предел прочности, но пониженную пластичность.  

        Ковкий чугун во многих случаях заменяет детали из стали, так как по механическим свойствам детали приближаются к стальным, а по цене получаются на 20-30% дешевле.                                                                                                                                                                                                             Недостатком  технологии получения ковких чугунов является сложность и большая энергоёмкость процесса, поэтому ковкий чугун  ни в Советском Союзе, ни в странах СНГ распространения не получил. В основном ковкий чугун используется для изготовления ответственных отливок, испытывающих при эксплуатации значительные динамические и знакопеременные нагрузки (например, коленчатые валы, ступицы грузовиков, приводные цепи конвейеров и др.)

          В обозначении марки ковкого чугуна буквы «КЧ» означают «ковкий чугун». Первая пара цифр - предел прочности в МПа, вторая пара цифр-относительное удлинение в %.

Легированные чугуны.Легированные чугуны получаются при введении в их состав легирующих компонентов (Cr, Si, Al, Ni, Mn и др.) Легирование производится  для получения каких либо особых свойств: износостойкости, жаростойкости, коррозионной стойкости и др.

    Из легированных чугунов можно выделить следующие группы:

  1.          --износостойкие чугуны;
  2.           --жаростойкие  чугуны;
  3.           -жаропрочные чугуны;
  4.           -коррозионностойкие чугуны;
  5.           -антифрикционные чугуны.
  6.       Легированные чугуны маркируются по типу сталей: первые буквы означают вид чугуна: Ж-жаростойкий, А-антифрикционный, Ч-жаропрочный или коррозионностойкий. Следующие буквы  обозначают наличие легирующих элементов (Х-хром, С-кремний, Ю-алюминий, Д-медь, Н-никель, Г-марганец, М-молибден, В-вольфрам). Цифры после букв  указывают примерное содержание  легирующего элемента в процентах. Если цифры нет, то содержание легирующего  элемента соответствует ~1 %.

Например, ЖЧЮ 7Х2- жаростойкий чугун, алюминия –7 %, хрома –2 %.

Износостойкие чугуны. Износостойкость чугуна повышается при увеличении в структуре количества карбидов  как простых (цементита), так и специальных (карбидов хрома, вольфрама, ванадия и т.д.).  Металлическая матрица должна прочно удерживать  твердую составляющую (карбиды) и предотвращать  ее хрупкое разрушение. Характерным представителем износостойких чугунов является высокохромистый износостойкий чугун ИЧХ20М2Г3Н2. Средний химический состав высокохромистого чугуна: С = 2,6-3 %, Si = 0,3-1,4%, Mn = 0,5-5,5%

Cr = 12-30%, Mo=0,4-4%, Ni = 0-3% , S≤0,08% , P≤0,1%.

Износостойкость высокохромистого чугуна превышает сталь Ст20 от 6 до 14 раз. В условиях гидрообразивного износа стойкость высокохромистого чугуна превышает, износостойкость высокомарганцевой стали Г13Л в 6 раз.

Существуют и другие виды износостойких чугунов (белый низколегированный, ОИ-1, ИЧХ4Г7Д, нихард и т.д.), но они уступают высокохромистому по износостойкости и поэтому применяются реже.

Жаростойкие чугуны.Жаростойкие чугуны используются для изготовления деталей работающих в газовой, воздушной, щелочной средах при температурах 500-1100°С. Жаростойкостью чугуна по ГОСТ 7769-85 называется способность сопротивляться росту и окалинообразованию при заданной температуре. Сопротивление окислению чугуна  обусловлено наличием на поверхности плотных защитных окисных пленок (окислы Al , Si ,  Cr) , которые предохраняют металл от последующего  окисления при  высоких температурах. Жаростойкие чугуны бывают хромистые, кремнистые и алюминиевые. Средний химический состав жаростойких чугунов:

С=2,0-3,9%,  Si=1,5-6,0%,  Mn=0,4-1,0%, Cr=0,5-32%,  Al=19-25%.

Структура хромистого чугуна состоит из ферроидизированного перлита, отдельных включений карбидов и графита. В высокохромистом сплаве

(26-30%  Cr ) структура состоит из твердого раствора хрома в α-железе и карбидов в виде карбидной эвтектики ( при С>2% ) .

Механические свойства и назначение некоторых марок  жаростойкого чугуна приведены в таблице 1.5.

При содержании Cr от 3-10% отливки получаются с высокой хрупкостью и твердостью, делающей невозможной обработку резанием. Поэтому такие чугуны находят ограниченное применение. Кремнистые чугуны отличаются хорошей обрабатываемостью резанием, так как  получается ферритная структура металлической матрицы. Алюминиевые чугуны даже с содержанием алюминия 8% имеют такое же сопротивление окислению, как нихром- сплав с 80% Ni и 20% Сr и  жаростойкостью 800°С. При легировании алюминиевого чугуна хромом (~30% )и  кремнием (~6%) жаростойкость возрастает до 1200° С при одновременном повышении прочности и сохранении литейных свойств.

                           Жаропрочные чугуны.Жаропрочные чугуны применяются для изготовления деталей, работающих под нагрузкой при повышенных температурах ( до 600°С ).  Марки жаропрочных чугунов обозначаются буквой «Ч», остальные обозначения такие же, как у всех остальных. Буква «Ш» в конце обозначения означает «с шаровидным графитом». Наиболее  высоким уровнем жаропрочных свойств обладает аустенитный чугун с шаровидной формой графита. Отличительной особенностью структуры аустенитного чугуна, легированного хромом и магнием, является наличие в структуре карбидной составляющей, количество которой составляет 50%. Мелкодисперсные структуры показывают более высокую жаропрочность, поэтому жаропрочные чугуны подвергают специальной термообработке - гомогенизирующему отжигу.  (1050° С- 4 часа)

Аустенитный жаропрочный чугун имеет следующий состав:

С=2,5-3,0%, Si=1,8-2,5%, Mn=1,0-8,0%, Cr=1,0-3,5% ,Ni=10-20%, S≤0,05%, P≤0,03%.

   Механические свойства и назначение некоторых марок жаропрочного

Коррозионностойкие чугуны. Коррозионностойкие чугуны применяются для изготовления деталей с высокой  коррозионной стойкостью в различных рабочих средах (морской воде, растворах кислот, расплавах солей, в перегретом водяном паре, в сернистых газах и т. д.). Для повышения  коррозионной стойкости чугун легируется  в основном Cr , Ni, Cu и другими элементами, которые создают на поверхности чугуна защитные (пассивирующие) пленки, а так же легируют металлическую матрицу (преимущественно, феррит) образуя химические соединения с высоким химическим потенциалом. Происходящее при этом измельчение структуры понижает  число  микропор и уменьшает разность потенциалов между отдельными структурными составляющими.

        Коррозионностойкие чугуны делятся на следующие группы:

  1.       - низколегированные чугуны (Cr до 1%, Ni до 1%);
  2.       -высококремнистые чугуны (ферросилиды);
  3.       -кремнемолибденовые чугуны (антихлоры);
  4.       -аустенитные никелевые чугуны (нирезист);
  5.       -высокохромистые чугуны.

   Каждая группа чугунов применяется в особых, специфических условиях, для которых и была специально разработана.

Коррозионностойкие чугуны широко применяются в химическом машиностроении, на железнодорожном транспорте для перевозки продуктов химической промышленности , в металлургическом машиностроении и др.

Антифрикционные чугуны.Антифрикционные чугуны (ГОСТ 1585-85) применяются для изготовления подшипников скольжения, работающих в присутствии смазки. Из антифрикционного чугуна изготавливаются цилиндры, поршни, станины, зубчатые колеса, втулки, вкладыши подшипников и т.д. Наиболее важными свойствами антифрикционного чугуна являются высокая износостойкость, хорошие литейные свойства и низкая стоимость. Главный недостаток антифрикционного чугуна – пониженная  по сравнению с бронзой прирабатываемость. Средний химический состав антифрикционного чугуна: С=2,5-3,8 %, Si=0,8-2,7 %, Мп=0,3-1,2 %, Р<0,15 %, S<0,03 %, Cr=0,2-0,4 %, Ni=0,2-0,4 %, Ti=0,1 %, Cu=0,3-0,7 %. (ГОСТ 1585-85).

      Антифрикционные чугуны легируются хромом, никелем, титаном и  медью, что позволяет получить мелкодисперсную структуру перлит+феррит.

Маркируется антифрикционный чугун буквами АСЧ, АВЧ, АКЧ, что означает антифрикционный серый, антифрикционный высокопрочный или антифрикционный ковкий. Последний (АКЧ) применяется с термообработкой, остальные без термообработки. Для нормальной работы деталей из антифрикционного чугуна ГОСТ 1585-85 устанавливает режим работы в узлах трения (табл.1.9).

                                           

                                   .

   


 

А также другие работы, которые могут Вас заинтересовать

69758. Технології передавання повідомлень 38 KB
  Сокет це абстрактна кінцева точка з’єднання через яку процес може відсилати або отримувати повідомлення. Під час обміну даними із використанням сокетів зазвичай застосовується технологія клієнтсервер коли один процес сервер очікує з’єднання а інший клієнт з’єднують із ним.
69759. Сторінково-сегментна організація пам’яті 52 KB
  Оскільки сегменти мають змінну довжину і керувати ними складніше, чиста сегментація зазвичай не настільки ефективна, як сторінкова організація. З іншого боку, видається цінною сама можливість використати сегменти як блоки пам’яті різного призначення змінної довжини.
69760. Атрибути файлів. Операції над файлами і каталогами 34.5 KB
  Кожний файл має набір характеристик - атрибутів. Набір атрибутів змінюється залежно від файлової системи. Найпоширеніші атрибути файла наведено нижче. Ім’я файла, докладно розглянуте раніше. Тип файла, який звичайно задають для спеціальних файлів (каталогів, зв’язків тощо).
69761. Продуктивність файлових систем 87 KB
  Оптимізація продуктивності під час розробки файлових систем Розглянемо яким чином можна оптимізувати продуктивність файлової системи зміною структур даних і алгоритмів які в ній застосовують. У викладі використовуватимемо класичний приклад оптимізації традиційної...
69762. Введення-виведення у режимі користувача 63 KB
  Тут зупинимося на взаємодії підсистеми введення-виведення із процесами режиму користувача та на різних методах організації введення-виведення з режиму користувача. Синхронне введення-виведення У більшості випадків введення-виведення на рівні апаратного...
69763. Таймери і системний час 27.5 KB
  Таймери керують пристроями які передають у систему інформацію про час. Вони відстежують поточний час доби здійснюють облік витрат процесорного часу повідомляють процеси про події що відбуваються через певний проміжок часу тощо.
69764. Термінальне введення-виведення в UNIX та Linux 40.5 KB
  Консоль Linux емулює спеціальний вид термінала, який називають Linux. Він надає доволі широкі можливості щодо керування відображенням інформації (підтримку кольору, керуючих клавіш, перевизначення символьної таблиці «на ходу»).
69765. Графічний інтерфейс користувача 61.5 KB
  Спільним у них є набір основних елементів реалізації куди входять вікна з елементами керування кнопками смугами прокручування тощо меню і піктограми а також використання пристрою для переміщення курсору по екрану та вибору окремих елементів наприклад миші.
69766. Реалізація стека протоколів Інтернету 66 KB
  Канальний рівень (data link layer) відповідає за передавання кадру даних між будь-якими вузлами в мережах із типовою апаратною підтримкою (Ethernet, FDDI тощо) або між двома сусідніми вузлами у будь-яких мережах (SLIP, PPP).