45962

Специальные способы литья: литьё по выплавляемым моделям, литьё в оболочковые формы, литьё в металлические формы, центробежное литьё

Доклад

Производство и промышленные технологии

Специальные способы литья Из специальных способов литья в настоящее время распространены литье в металлические формы центробежное литье литье под давлением точное литье по выплавляемым моделям литье методом вакуумного всасывания и литье в оболочковые формы. Отливки получаются без швов у форм нет разъемов размеры отливок получаются точными чем при литье в землю так как здесь исключены причины потери точности от расколачивания формы моделью при ее извлечении перекос половинок формы подъем верхней опоки и раздутие формы под давлением...

Русский

2013-11-18

19.78 KB

8 чел.

  1.  Специальные способы литья: литьё по выплавляемым моделям, литьё в оболочковые формы, литьё в металлические формы, центробежное литьё.

Специальные способы литья

Из специальных способов литья в настоящее время распространены литье в металлические формы, центробежное литье, литье под давлением, точное литье по выплавляемым моделям, литье методом вакуумного всасывания и литье в оболочковые формы.

Усовершенствование и внедрение специальных видов литья дает возможность получить отливки настолько близкие к окончательному виду изделия, что механическую обработку можно ограничить лишь чистовой и шлифованием.

литье по выплавляемым моделям

В этом способе литья модели изготавливается из легковыплавляемого материала - парафина со стеарином и др. на модели, изготовленные с большой точностью, наносится прочная оболочка, которая обеспечивает проведение операций вытапливания моделей, прокаливания и заливки жидким металлом без применения наполнителей и опок, затрудняющих ранее производство точного литья по выплавляемым моделям. На выплавляемую модель наноситься несколько (2-5 слоев), состоящих из кварцевой муки и гидролизованного раствора этилсиликата (или их заменителей). Последний слой наносится из массы, придающей керамической оболочке необходимую прочность после вытапливания модели и прокаливания оболочки. Хорошие результаты обеспечиваются составом из: 40-45% раствора жидкого стекла с удельным весом 1,32 и 60-65 % по весу кварцевой муки (маршалита, молотого кварцевого песка или плавленого кварца), просеянной через сито № 100. нанесенные слои, присыпанные песком, подвергаются воздушной сушке при температуре 20-25 oC в течении не менее 4 час. Или электросушке (10 мин).

При электросушке одновременно вытапливается модель, а при воздушной сушке модель вытапливается 20-40 мин. В термостате, нагретом до 150-180 oC. При вытапливании модельные комплекты помещают литниковой чашей вниз.

После вытапливания модели оболочка нагревается в прокалочной печи, нагретой до температуры 600-650 oC. Затем температура повышается до 900 oC со скоростью примерно 100-150 oC в час. По достижении в печи900oC, прокаливание заканчивается, оболочка удаляется из печи и подается на заливку.

Во избежании образования окалины на отливку из-за доступа воздуха через оболочку и в целях обеспечения техники безопасности оболочку перед заливкой металлом помещают в кожух из тонкого железа на поддоне и засыпают зазор сухим песком (а при необходимости быстрого охлаждения - металлической дробью), накрыв конической крышкой литниковую чашу. Крышку перед заливкой металла удаляют.

Отливки получаются без швов (у форм нет разъемов), размеры отливок получаются точными, чем при литье в землю, так как здесь исключены причины потери точности от расколачивания формы моделью при ее извлечении, перекос половинок формы, подъем верхней опоки и раздутие формы под давлением жидкого металла и т.п. Точность отливок, получаемых по выплавляемым моделям, достигает ± 0,05 мм на 25 мм длины отливки, а чистота поверхности получается в пределах 4-6-го классов по ГОСТ 2789-51.

Этим способом отливают из стали, чугуна и цветных металлов изделия от нескольких граммов до 50 кг, а художественные отливки - до 100 кг и габаритом до 1,5 м.

Применение точного литья целесообразно ля изготовления деталей; 1) из стали и сплавов трудно поддающихся или не поддающихся механической обработке (режущий инструмент, нуждающийся только в заточке его режущей кромки на наждачном круге); 2) сложной конфигурации, требующей длительной и сложной механической обработки, большого количества приспособлений и специальных режущих инструментов, с неизбежной потерей ценного металла в виде стружки при обработки (турбины лопатки, части механизма швейных машин, охотничьих ружей, счетных машин); 3) художественной отливки из черных и цветных сплавов.

Имеются и многие другие области применения точного литья по выплавляемым моделям.

Литье в оболочковые формы

К передовым технологическим способам литья, позволяющим изготовлять наиболее точные отливки с минимальной механической обработкой, с уменьшением расхода металла на стружку относиться литье в оболочковой форме.

Для получения литья в оболочковые формы на нагретые металлические плиты с закрепленными на них металлическими моделями и литниковой системой наносится слой песчано-бакелитовой смеси. Нагретая до 150-200 oC модельная оснастка расплавляет бакелит. Который смачивает зерна формовочного материала, прилипающего к модели. Избыток смеси, не прилипший к модели, удаляется, а модельная плита с коркой смеси толщиной 7-10 мм помещается в печь, нагретую до 300-350 oC, где быстро (1-3 мин.) происходит затвердевание корки на модели. Жесткая корка, снятая с модели (полуформа), спаривается с соответствующей ей другой оболочковой полуформой и заливается металлом.

Материалом для оболочковых форм, заливаемых, чугуном или цветными металлами и сплавами, служит мелкозернистый кварцевый песок с 10% бакелитовой смолы. С целью улучшения поверхности стальных отливок иногда применяют хромистый железняк, хромомагнезит, магнезит и другие добавки, повышающие огнеупорность, но удорожающие стоимость песчано-смоляной смеси.

Замена обычной песчаной формы только оболочкой (коркой) сокращает расход формовочных смесей на 50-90 %, повышает точность размеров и чистоту поверхности отливки, увеличивает съем с квадратного метра производственной площади, снижает стоимость отливки.

Литее в металлические формы

При литее в металлические формы получаются отливки с хорошими механическими качествами благодаря мелкозернистому строению металла вследствие быстрого остывания. Отливки имеют довольно точные очертания, почти не требующие обработки, а если в них и предусматривается припуск на обработку, то в несколько раз меньше, чем при отливке в песок. При литье в металлические формы отпадают земельное хозяйство, опоки, сушильные печи, а условия работы становятся более гигиеничными (нет пыли от формовочной земли). Из-за массивности металлической формы вес отливаемых деталей ограничен.

В настоящее время с успехом применяют автоматические литейные машины, в которых закрывание и открывание металлической формы механизировано. Удаление газов из газонепроницаемых форм производиться через выпоры, через трехгранные щели и вентиляционные нитяные каналы в плоскости разъема формы, достаточные по сечению для выхода газов, но недостаточные для утечки металла.

Материал для изготовления металлической формы берется в зависимости от заливаемого в него сплава; обычно применяют серый чугун, реже - малоуглеродистую сталь. Температура формы перед заливкой должна быть не ниже 200 oC для стали; для чугуна - 200-300 oC; для алюминиевых сплавов - 250-350 oC; для медных сплавов - 150-200 oC (при массивных отливках - 120-150 oC).

Формы для продления срока их службы смазывают одним из следующих огнеупорных материалов: SiO2 (кварцевый мукой или маршалитом), MgO (магнезитом), Al2O3 (глиноземом, огнеупорной глиной или бетонитом). FeO · Cr2O3 (хромистым железняком). Связующим веществом при этом обычно служит жидкое стекло.

Перед заливкой медных сплавов металлическую форму не обмазывают, а окрашивают специальной краской из варенного масла с графитом (4%) или просто смазочным маслом с парафином(по 50%) и др. Для алюминиевых сплавов формы смазывают составом из 30 г окиси цинка и 30 г жидкого стекла на 1 л воды или 200 г мела и 30 г жидкого стекла на 1 л воды.

Центробежное литье

При центробежном литье во вращающуюся форму заливают расплавленный металл, который под действием центробежных сил прижимает ее к стенкам и, застывая, принимает желаемую форму. Отливки получаются плотными, так как посторонние включения, равно как и газы, будучи легче металла, оттесняются центробежной силой к внутренней поверхности формы, а основное тело отливки приобретает плотное здоровое строение.При центробежном литье формы делают из чугуна и хромоникелевой стали. С внутренней стороны поверхности смазываю тих слоем огнеупорного материала.Удлиненные детали (цилиндры, втулки) отливают на машине с горизонтальной осью, а зубчатые колеса, круги, кольца, гребни винты и арматуру - на центробежной машине с вертикальной осью.При центробежном литье можно получить отливки любой формы, а не только тела вращения. При так называемом полуцентробежном литье конфигурация отливаемых деталей образуется не только центробежной силой, но и с помощью стержней. Ось вращения формы при этом совпадает с осью симметрии отливки. При центрифугировании металл в форму подается через стояк в центре, а в полость форм, расположенных на горизонтальном столе, он попадает по литниковым каналам. Таким способом можно получить отливки и не имеющие оси симметрии. Любой конфигурации.


 

А также другие работы, которые могут Вас заинтересовать

22341. Детекторы радиосигналов 676.5 KB
  Амплитудные детекторы Амплитудный детектор устройство на выходе которого создается напряжение в соответствии с законом модуляции амплитуды входного гармонического сигнала. Если на входе АД действует напряжение ивх модулированное по амплитуде колебанием с частотой F то график изменения этого напряжения во времени и его спектр имеют вид показанный на рисунке 2а. Напряжение на выходе детектора ЕД рисунок 2б должно меняться в соответствии с законом изменения огибающей Uвх входного напряжения ивх. Таким образом напряжение на выходе АД...
22342. Прием цифровых сигналов при наличии шумов 191 KB
  Модуляция несущей происходит в передатчике и параметры модулированного сигнала полностью определяются выбранным методом модуляции и возможностями элементной базы. Ситуация усложняется еще тем что все параметры среды распространения сигнала определяются только статистически и в значительной степени приближенно. Функциональные схемы приемника цифровых сигналов Для высокочастотного сигнала типовой приемник имеет функциональную схему супергетеродина т.
22343. Синхронизация гетеродина приемника с несущей частотой 112.5 KB
  Вовторых применение оптимального фильтра максимизирующего отношение сигнал шум принятого сигнала также требует снятие отсчетов в строго определенные моменты времени. Эта необходимость возникает в том случае когда в приемнике используется когерентное детектирование ВЧ сигнала. Следовательно несущая и тактовая частоты должны быть восстановлены непосредственно в приемнике из принятого сигнала или получены от того же самого передатчика в виде опорного пилотсигнала. Параметры принятого сигнала Передаваемый и принимаемый сигналы...
22344. КРАТКАЯ ИСТОРИЯ ВОЗНИКНОВЕНИЯ РАДИО. ОСНОВНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛА В РАДИОПРИЕМНОМ ТРАКТЕ 71.5 KB
  ОСНОВНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛА В РАДИОПРИЕМНОМ ТРАКТЕ Краткая история возникновения радио Свою историю радио начинает с экспериментов Герца по проверке уравнений Максвелла. Поэтому в радиоприемном тракте необходимо решать задачи: выделения полезного сигнала из смеси его с помехами; выделения модулирующей функции; выделения передаваемой информации из модулирующей функции и ее преобразование к удобному для дальнейшего использования виду. Решение перечисленных задач в радиоприемном тракте осуществляется с помощью следующих функций:...
22345. Основные архитектуры РПТ. Шумовые характеристики, динамический диапазон 431.5 KB
  Как и в квадратурном смесителе здесь используется пара идентичных смесителей на которые помимо РЧ сигнала подается сигнал с гетеродина в квадратуре. Сигналы в I и Q каналах содержат полную информацию об огибающей входного сигнала и могут быть обработаны в соответствующим образом построенном демодуляторе. В приемнике прямого преобразования наличие рассогласования в цепях смесителя и ФНЧ не ведет к ухудшению селективности а лишь к некоторому искажению полезного сигнала что зачастую не имеет никакого значения при приеме цифровых данных....
22346. Входные каскады РПТ. Высокочастотные фильтры, УРЧ 247.5 KB
  С точки зрения минимизации вносимых приемником шумов следовало бы в качестве первого каскада использовать малошумящий усилитель МШУ имеющий максимальный коэффициент усиления и минимальный коэффициент шума. Современные МШУ имеют коэффициент шума до 0. В диапазоне частот 450 мГц МШУ имеет коэффициент шума 2. Суммарный коэффициент шума в последовательном включении МШУ фильтр рассчитывается по 1.
22347. Непрерывность функций комплексной переменной 468 KB
  Если то функция называется непрерывной в точке . Иными словами: непрерывна в точке если для любого сколь угодно малого существует положительное число такое что 2 для всех удовлетворяющих неравенству 3 короче . Геометрически это означает что для всех точек лежащих внутри круга с центром в точке достаточно малого радиуса соответствующие значения функции изображаются точками лежащими внутри круга с центром в точке сколь...
22348. Интегрирование функций комплексной переменной 1.52 MB
  кривая с выбранным направлением движения вдоль нее и на ней функция комплексной переменной fz. Если C кусочногладкая а значит спрямляемая кривая а fz кусочнонепрерывная и ограниченная функция то интеграл 1 всегда существует. Если функция fz аналитична в односвязной области D то для всех кривых C лежащих в этой области и имеющих общие концы интеграл имеет одно и то же значение. fz аналитическая функция.
22349. Формула Коши и теорема о среднем 821.5 KB
  Пусть функция аналитична в связной области и непрерывна в . Тогда для любой внутренней точки этой области имеет место так называемая формула Коши: 1 где граница области проходимая так что область остается всё время слева. Таким образом формула Коши позволяет вычислить значение аналитической функции в любой точке области если известны граничные значения этой функции. Выбросим из области кружок радиусом с центром в точке и заметим что в полученной...