45976

Механические характеристики электродвигателей

Лекция

Физика

Скорость почти всех электродвигателей является убывающей функцией момента двигателя, то есть с увеличением момента скорость уменьшается [чил 33]. Но степень изменения скорости у разных электродвигателей различна и характерезуется параметром жесткость механические характеристик.

Русский

2014-03-28

86.95 KB

89 чел.

ТЕМА ЛЕКЦИИ 10

Механические характеристики электродвигателей

ПЛАН ЛЕКЦИИ

1.Естественные и искусственные механические характеристики электродвигателей

  1.  Жесткость механических характеристик 
  2.  Естественная механическая характеристика двигателя постоянного тока параллельного возбуждения
  3.  Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения
  4.  Естественная механическая характеристика асинхронного двигателя
  5.  Механическая характеристика синхронного двигателя. Область применения синхронных двигателей на судах

 

Механической характеристикой двигателя, независимо от рода тока, называют зависимость угловой скорости вала электродвигателя ω (далее – двигателя) от электромагнитного момента двигателя , т.е зависимость        ω ().

Здесь следует сделать важное замечание: в соответствии с уравнением моментов, в установившемся режиме   = , электромагнитный момент двигателя уравновешивается статическим моментом (моментом сопротивления) механизма. Это означает, что величина электромагнитного момента двигателя полностью зависит от момента механизма – чем больше тормозной момент механизма, тем больше вращающий момент двигателя, и наоборот.

       То есть, для любого двигателя входной величиной является момент механизма, а выходной  его скорость.

Скорость почти всех электродвигателей является убывающей функцей момента двигателя, то есть с увеличением момента скорость уменьшается [чил 33]. Но степень изменения скорости у разных электродвигателей различна и характерезуется параметром жесткость механические характеристик.

Жёсткость механические характеристик электропривода β  это отношение разности электромагнитных моментов двигателя при разных скоростях к соответствующуй разности угловых скоростей электропривода.

β = (М2  М1)/( ω2  ω1)= Δ / Δω

Обычно на рабочих участках механические характеристики электродвигателей имеют отрицательную жёсткость  β < 0,  так как( ω2< ω1,

М1< М2) при большей скорости электромагнитный момент меньше.

Различают естественные и искусственные механические характеристики электродвигателей.

Естественная механическая характеристика  – это зависимость          ω(), снятая при нормальных условиях работы двигателя, т.е. при номинальных параметрах питающей сети и отсутствии добавочных резисторов в цепях обмоток двигателей.

        К параметрам питающей сети относятся: при постоянном токе – напряжение, при  переменном токе – напряжение и частота тока.

Характеристики, снятые при условиях, отличных от нормальных, называют искусственными.

Искусственные характеристики можно получить путем изменения параметров двигателя, например, путем введения резисторов в цепь обмотки якоря двигателя постоянного тока или в цепь обмотки ротора асинхронного двигателя, либо изменением параметров питающей сети, т.е. напряжения и частоты переменного тока.

 Каждый электродвигатель имеет одну естественную и множество искусственных характеристик. Число искусственных характеристик зависит от числа ступеней регулирующего элемента, например, числа ступеней регулировочного реостата в цепи обмотки якоря двигателя постоянного тока. Если у двигателя таких ступеней – пять, то такой двигатель имеет шесть характеристик – пять искусственных и одну естественную.

Искусственные механические характеристики применяются для получения таких режимов работы двигателя, как регулирование скорости, реверс, электрическое торможение, и др.

Рассмотрим естественные механические характеристики двигателей разных  типов.

Рис. 10.1 Естественная механическая (а) и угловая (б) характеристики синхронного двигателя; θ угол отставания оси ротора от оси магнитного поля обмотки статора

Естественная механическая характеристика синхронного двигателя

Естественная механическая характеристика синхронного двигателя (рис. 10.1а )  абсолютно жесткая  это характеристика при которой скорость  с изменением момента не изменяется, ее жесткость (β = ∞)

β = Δ / Δω = Δ / 0 = ∞.

 Cтабильность скорости ротора синхронного двигателя объясняется угловой характеристики синхронного двигателя θ() следующим образом   ( рис. 10.1 б ), если механическая нагрузка к ротору не приложена, то оси ротора и вращающегося магнитного поля обмотки статора совпадают, т.е.   θ = 0°   (точка 0 на рис.10.1б). Если электромагнитный момент двигателя    М = 0, двигатель работает в режиме холостого хода.

Если приложить к валу двигателя механическую нагрузку и увеличивать ее, то ротор под действием механической нагрузки станет отставать от магнитного поля обмотки статора на все больший угол θ.

 Чем больше механическая нагрузка на валу, тем больше этот угол и тем больше вращающий электромагнитный момент двигателя.

Такое одновременное увеличение вращающего момента двигателя, вызываемое увеличением тормозного момента механизма как раз и обеспечивает стабильность скорости двигателя ( на рис. 10.1а  участок характеристики от  = 0 до  = ).

Однако постоянство скорости двигателя сохраняется до тех пор, пока угол θ≤90°. При θ = 90° двигатель развивает критический (максимальный) момент (точка А на рис. 10.1 а).

Если при  θ = 90° вновь увеличить механическую нагрузку (θ > 90°), электромагнитный момент двигателя станет уменьшаться (отрезок АВ угловой характеристики), т.е. этот момент окажется меньше тормозного момента механизма. В результате скорость ротора двигателя станет уменьшаться, и в конце концов ротор остановится.

Поскольку при этом скорость ротора меньше  скорости вращающегося магнитного поля обмотки статора, говорят, что двигатель выпал из синхронизма.

Как следует из угловой характеристики двигателя, условие выпадения двигателя из синхронизма такое: θ≤90°.

На практике номинальный угол θ= 20…40°.

Область применения синхронных двигателей: на судах – в качестве гребных электродвигателей, вращающих винты; на берегу – для привода мощных механизмов, например, компрессоров на газоперекачивающих станциях.

Естественная механическая характеристика двигателя постоянного тока

Естественная механическая характеристика двигателя постоянного тока паралельного возбуждения ( рис. 8.5 ) – жёсткая, потому что ее жёсткость

β = Δ / Δω ≤ 10%.

Рис. 10.2 Естественная механическая характеристика двигателя постоянного тока параллельного возбуждения

 

Это означает, что при изменении электромагнитного момента двигателя в широких пределах его скорость достаточно стабильна (т.е. изменяется незначительно).

Такие двигатели применяются там, где при изменении нагрузки механизма в широких пределах скорость двигателя не должна изменяться резко   – в электроприводах насосов, вентиляторов и т.п.

   

Рис. 10.3  Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения

Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения (рис. 10.3  ) – мягкая, потому что ее жёсткость

β = Δ  / Δω > 10%.

Это означает, что при изменении электромагнитного момента двигателя даже в небольших пределах его скорость изменяется значительно.

Напомним две характерные особенности этого двигателя двигателя постоянного тока последовательного возбуждения:

  1.  При уменьшении механической нагрузки на валу или ее отсутствии             ( = )

скорость двигателя резко увеличивается, двигатель «идет вразнос». Поэтому этот двигатель нельзя оставлять без нагрузки на валу;

  1. При пуске двигатель развивает пусковые моменты больше, чем у двигателей других типов.

Эти двигатели не применяются на судах, но применяются на берегу, например, в электротранспорте, в частности, в троллейбусах, где они не остаются без нагрузки на валу и где нужны большие пусковые моменты (при трогании троллейбуса с места).

Рис. 10.4 Естественные механические характеристики двигателей постоянного тока смешанного возбуждения: 1 с параллельно-последовательным возбуждением;

2 - с последовательно параллельным возбуждением

Естественная механическая характеристика двигателя постоянного тока смешанного возбуждения промежуточная  между характеристиками двигателей паралельного и последовательного возбуждения, т.к. магнитный поток возбуждения создается совместным действием обеих обмоток – параллельной и последовательной.

Различают два вида двигателей смешанного возбуждения:

  1.  с паралельно последовательным возбуждением, у которых основную часть результирующего магнитного потока создает параллельная обмотка (до 70%, остальные 30%  последовательная);

2. с последовательно параллельным возбуждением, у которых основную часть результирующего магнитного потока создает последовательная обмотка (до 70%, остальные 30%  параллельная).

Поэтому график  механической  характеристики двигателя первого вида более жесткий, чем у  двигателя второго вида.

Обе механические характеристики  мягкие, потому что их жесткость

β = Δ / Δω > 10%.

На судах двигатели смешанного возбуждения применяются в регулируемых электроприводах – лебедках, кранах, брашпилях и шпилях.

Естественная механическая характеристика асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя имеет два участка – нерабочий (разгонный) АВ и рабочий  ВСD (рис. 8.8).

Рис. 10.5 Естественная механическая характеристика асинхронного двигателя

При пуске двигатель развивает пусковой  момент (отрезок ОА), после чего разгоняется по траектории АВС до точки С. При этом на участке АВ одновременно увеличиваются как скорость, так и момент, в точке В двигатель развивает максимальный момент . На участке ВС  скорость продолжает  увеличиваться, а момент уменьшается, до номинального (точка С). На участке BC двигатель перегружен, т.к. в любой точке этого участка электромагнитный момент двигателя больше номинального ( > > ).

В нормальних условиях двигатель работает на участке СD, жесткость которого  

β = Δ / Δω < 10%.

Это означает, что при изменении момента в широких пределах скорость двигателя изменяется незначительно.

Асинхронные двигатели нашли самое широкое применение на судах с электростанцией на переменном токе.

Промышленность выпускает специально для судов асинхронные двигатели разных серий, например, 4А…ОМ2 (четвертая серия асинхронных двигателей), МАП (морской асинхронный полюсопереключаемый), МТF        (c фазным ротором) и др.

При этом двигатели серии 4А – односкоростные, серии МАП – двух- и трехскоростные, серии МТF – число скоростей определяется схемой управления ( до 5 скоростей ).


 

А также другие работы, которые могут Вас заинтересовать

29401. Электрооборудование буровых установок 85.5 KB
  Процесс бурения скважин включает в себя следующие операции: Спуск бурильных труб с долотом разрушающим инструментом в скважину. Наращивание колонны бурильных труб по мере углубления скважины. Подъем труб для замены изношенного долота. При роторном бурении вращение долота осуществляется с помощью колонны бурильных труб.
29402. Электропривод буровых лебедок 80.5 KB
  Кроме подъема и спуска колонны бурильных труб КБТ с помощью буровой лебедки часто осуществляют свинчивание и развинчивание труб их перенос и установку подъем и опускание незагруженного элеватора а также подачу долота на забой. Причем для подъема КБТ служат приводные двигатели лебедки а для спуска электромагнитные тормоза индукционного или электропорошкового типа или приводные двигатели в режиме динамического или рекуперативного торможения. Требования к электроприводу буровой лебедки. Электропривод буровой лебедки БЛ должен обеспечивать...
29403. Электропривод буровых насосов 44.5 KB
  Основными параметрами характеризующими работу насоса являются его подача Q и напор p развиваемый при заданной подаче. Мощность привода насоса определяется произведением Q∙p. В бурении в основном применяются поршневые насосы со сменными цилиндровыми втулками позволяющие изменять подачу насоса. В зависимости от диаметра втулки будет изменяться подача насоса а также предельнодопустимое давление на выходе насоса снижающееся при увеличении диаметра втулки.
29404. Электропривод постоянного тока по системе ТП-Д 28.5 KB
  В буровых установках для бурения скважин глубиной 6510 км в ЭП буровых насосов используются ДПТ управляемые по системе ТПД. Буровыми насосами с регулируемым ЭП по системе ТПД оснащаются буровые установки БУ2500 ЭП и БУ6500 ЭП и установки морского бурения. Механическая характеристика регулируемого ЭП бурового насоса по системе ТПД.
29405. Автоматические регуляторы подачи долота 94 KB
  Подача долота это последовательное опускание верхней точки КБТ в процессе бурения при этом скорость подачи долота должна быть равна скорости разбуривания. Задача плавной и равномерной подачи долота решается применением автоматических регуляторов. В зависимости от места расположения автоматические регуляторы подачи долота бывают наземными или глубинными погружными.
29406. АСИНХРОННЫЕ МАШИНЫ (ПЕРЕМЕННОГО ТОКА) 35 KB
  Асинхронный двигатель состоит из неподвижного статора и вращающегося ротора разделенных между собой воздушным зазором. Сердечник собирается из тонких листов электротехнической стали изолированных друг от друга и запрессовывается в корпусе статора. На внутренней поверхности сердечника вырублены пазы в которые укладывается трехфазная обмотка статора. Обмотка подключена к трехфазной сети и представляет собой систему проводников сдвинутых относительно друг друга в пространстве вдоль окружности статора на 120о.
29407. Буровые установки 27.5 KB
  Регулируемые приводы используют систему ТПДПТ. Силовой привод буровой установки может быть дизельным электрическим дизельэлектрическим и дизельгидравлическим. Дизельный привод применяют в районах не обеспеченных электроэнергией необходимой мощности.
29408. Взрывозащищенное электрооборудование 43.5 KB
  Взрывозащищенное электрооборудование различается по уровню взрывозащиты группам и температурным классам. Установлены следующие уровни взрывозащиты электрооборудования: 1. Вид взрывозащиты определяется установленным набором средств взрывозащиты. Для взрывозащищенного электрооборудования установлены следующие виды взрывозащиты: Взрывонепроницаемая оболочка [d].
29409. Дизель-электрический привод буровых установок 28 KB
  В последние годы существует тенденция расширения номенклатуры и объемов производства буровых установок с дизельэлектрическим приводом. Переход к автономному энергоснабжению позволяет решить проблему энергоснабжения удаленных от базы буровых установок проблему слабых сетей решить проблему повышения установленной мощности главных и вспомогательных приводов на буровых установках и др. Перечисленные недостатки системы ГД затрудняют ее использование в морских буровых установках.