46191

Решение систем линейных дифференциальных уравнений матричным методом

Доклад

Математика и математический анализ

Часто в физике при решении определенных задач приходится сталкиваться с системами из 3 или 4 линейных дифференциальных уравнений. При решений таких систем удобно использовать матричный метод решения систем линейных дифференциальных уравнений. Часто матрица коэффициентов этих систем уравнений имеет симметричный вид.

Русский

2013-11-19

78 KB

39 чел.

Решение систем линейных дифференциальных уравнений матричным методом

М.В. Дубина (МГПУ им. И.П. Шамякина)

Научный руководитель – В.В. Шепелевич, доктор ф.-м. наук, профессор

Часто в физике при решении определенных задач приходится сталкиваться  с системами из 3 или 4 линейных дифференциальных уравнений. При решений таких систем удобно использовать матричный метод решения систем линейных дифференциальных уравнений. Часто матрица коэффициентов этих систем уравнений имеет симметричный вид.

Использование этого метода сводится к следующему алгоритму:

1.Приведение системы уравнений к виду:

2.Нахождение собственных значений  матрицы .

3.Осуществляем спектральное разложение , составляем систему матричных уравнений относительно  и решаем ее.

4.Решение в общем виде имеет вид:

В частных случаях компоненты матрицы можно выразить в отдельности и избежать решения системы матричных уравнений.

В физических задачах зачастую матрица коэффициентов имеет симметричный вид.

Теорема 1: Если матрица  симметрична, то симметрична и матрица , где  произвольные числа.

Доказательство: Для элементов матрицы имеем:

где  порядок матрицы. При  получаем .

Теорема 2: Если матрица  симметрична, то симметрична и матрица , где  произвольные числа.

Доказательство: Для элементов матрицы имеем:

где  порядок матрицы.

При  получаем  (поскольку  и ), отсюда .

Лемма 1: Если матрица коэффициентов  системы 2,3 или 4 дифференциальных уравнений симметричная, то и компоненты  матрицы  будут также симметричными матрицами.

Доказательство: Выразив каждый компонент матрицы  отдельно, для всех возможных случаев, получим либо:, либо . Тогда согласно теореме 1 лемма 1 является верной.

1. Ланкастер П. Теория матриц. – М.: Наука,1982. – С.148 – 174.

2. Гантмахер Ф.Р. Теория матриц. – М.: - С.124 – 133.

3. Матвеев Н.В. Методы интегрирования обыкновенных дифференциальных уравнений: Учебное пособие. 5-е изд., доп. – СПб.: Лань,2003 – С.653 – 782.


 

А также другие работы, которые могут Вас заинтересовать

14849. Арифметикалық және геометриялық прогрессия 29 KB
  Арифметикалық және геометриялық прогрессия Ежелгі замандардан бастап адамзат арифметикалық және геометриялық прогрессиялардың заңдылықтарын қолдана білген.Мәселен Біздің заманымызға дейінгі ежелгі вавилондықтардың сына жазу клинопись кестелерінде ежелгі мысы...
14850. КВАДРАТ ТЕҢДЕУЛЕРДІ ШЕШУ ЖОЛДАРЫНЫҢ ӘР ТҮРЛІ ӘДІСТЕРІ 150.5 KB
  КВАДРАТ ТЕҢДЕУЛЕРДІ ШЕШУ ЖОЛДАРЫНЫҢ ӘР ТҮРЛІ ӘДІСТЕРІ З.Е.Темірғали Б.А.Қадырбаева І.Жансүгіров атындағы Жетісу мемлекеттік университеті Талдықорған қ. Білім өркениеттіліктің әрі өлшемі әрі тетігі болып табылатындықтан кез келген мемлекеттің рухани және ә...
14851. Өлшеулер теориясының негізгі түсініктері 326 KB
  1 тақырып Өлшеулер теориясының негізгі түсініктері Дәрістер жоспары 1. Физикалық қасиеттері мен шамалар 2. Өлшеу және негізгі операциялар Қоршаған ортаның барлық объектілері өз қасиеттерімен сипатталады. Қасиет – бұл объектінің құбылыстың процестің бір жағы о...
14852. Сызықтық функция 199 KB
  Сызықтық функция y = kx l мұндағы x тәуелсіз айнымалы k мен l – нақты сандар түріндегі формуламен берілетін фуннкцияны сызықтық функция деп атайды. у = kx l функциясының анықталу аймағы барлық нақты сандар жиыны. Егер у = kx l сызықтық функциясындағы l = 0 бол
14853. Үшбұрыштың ішкі бұрыштарының қосындысы 46.5 KB
  Үшбұрыштың ішкі бұрыштарының қосындысы. Сабақтың мақсаты: Білімділігі: Үшбұрыштың ішкі бұрыштарының қосындысы туралы теореманы қарастыру Үшбұрыштың сыртқы бұрыштары жөнінде түсінік енгізу. Дамытушылық: Творчестволық және логикалық ойлауқабі
14854. Ортағасырлық мәдениет және мемлекет қайраткерлері: Асан қайғы, Қазтуған, Шалкиіз және Жиембет жыраулар 94.5 KB
  Тақырыбы: Ортағасырлық мәдениет және мемлекет қайраткерлері: Асан қайғы Қазтуған Шалкиіз және Жиембет жыраулар Жоспар: Кіріспе Негізгі бөлім. а Жерұйық іздеген желмаяды ә Қызыл тілдің шешені б Тебінгіден ала балта суырысып... Қорытынды. ...
14855. АДАМЗАТ ҚОҒАМЫНЫҢ ЭВОЛЮЦИЯСЫ 160 KB
  АДАМЗАТ ҚОҒАМЫНЫҢ ЭВОЛЮЦИЯСЫ 5.1. Қоғамның қалыптасу кезеңдері Адам эволюциясына байланысты палеолит жоғарғы және төменгі болып екіге бөлінеді. Төменгі палеолит – архантроптар мен палеонтроптардың тіршілік ету кезеңі болып табылады. Бұл кезеңнің өзінде бірнеше а...
14856. Жердегі сұлулықтың мекені 38 KB
  Жердегі сұлулықтың мекені Айша Ғарифқызы Ғалымбаева Қазақстанның халық суретшісі ҚР Ш.Уәлиханов атындағы Мемлекеттік сыйлығының лауреаты Құрмет белгісі Еңбек Қызыл ту ордендерінің иегері. Оның есімі Республиканың құрметті Алтын кітабына жазылған. Қазақстан ...
14857. БЕЙНЕЛЕУ ӨНЕРІ АРҚЫЛЫ ЖАСТАРДЫҢ ПАТРИОТТЫҚ СЕЗІМДЕРІН ҚАЛЫПТАСТЫРУ 40 KB
  БЕЙНЕЛЕУ ӨНЕРІ АРҚЫЛЫ ЖАСТАРДЫҢ ПАТРИОТТЫҚ СЕЗІМДЕРІН ҚАЛЫПТАСТЫРУ Амандық Талғат Л.Н.Гумилев атындағы Еуразиялық Ұлттық Университеті Астана қ. Жалпы адам баласында рухани және материалды байлық деген бар. Соның ішінде адамды адам етіп ұлтты ұлт етет...