46317

Прочность деталей приспособлений

Лекция

Производство и промышленные технологии

Прочность деталей приспособлений Прочность одно из основных требований предъявляемых к деталям и приспособлениям в целом. Прочность деталей может рассматриваться по коэффициентам запаса или по номинальным допускаемым напряжениям. С помощью расчета деталей элементов приспособлений на прочность можно решать две задачи: а проверку на прочность уже существующих деталей с определенными размерами сечений путем сравнения фактических напряжений моментов сил с допускаемыми проверочный расчет; б определение размеров сечений деталей ...

Русский

2013-11-21

84.5 KB

39 чел.

ЛЕКЦИЯ 16

16. Прочность деталей приспособлений

Прочность — одно из основных требований, предъявляемых к деталям и приспособлениям в целом. Прочность деталей может рассматриваться по коэффициентам запаса или по номинальным допускаемым напряжениям. Расчеты по номинальным допускаемым напряжениям менее точны и прогрессивны, но значительно проще.

С помощью расчета деталей (элементов) приспособлений на прочность можно решать две задачи: а) проверку на прочность уже существующих деталей с определенными размерами сечений путем сравнения фактических напряжений) (моментов, сил) с допускаемыми — проверочный расчет; б) определение размеров сечений деталей — предварительный проектный расчет.

Расчет на прочность (задача а) детали в виде стержня круглого сечения, нагруженного осевой силой, по допускаемым напряжениям растяжения (сжатия) осуществляется по формуле

,

где — фактическое напряжение растяжения (сжатия), МПа; Р — расчетная осевая сила, Н; d — диаметр опасного сечения (для резьбового стержня — внутренний диаметр резьбы), мм; [] — допускаемое напряжение растяжения (сжатия), МПа.

Определение необходимого размера опасного сечения (задача б) для подобного случая можно производить по формуле

.

Полученное значение округляется в сторону увеличения до целого или ближайшего стандартного значения. При наличии шпоночного паза в опасном сечении детали полученное расчетом значение d следует увеличить на 5.. .10 %.

Расчеты на прочность валов и осей с целью определения их размеров (задача б) можно производить по формулам: на изгиб (детали круглого сечения)

;

на изгиб (детали кольцевого сечения)

;

на кручение

на изгиб с кручением (детали круглого сечения)

на изгиб с кручением (детали кольцевого сечения)

где Мизизгибающий момент, Н • мм; Мкркрутящий момент, Н•мм; Мэкв — эквивалентный момент, Н • мм; ;допускаемое напряжение при изгибе, МПа; [] — допускаемое напряжение при кручении, МПа; k0 = = d0/d — отношение внутреннего диаметра вала (оси) d0 к наружному d.

Необходимо помнить, что оси рассчитываются только на изгиб, так как они не передают крутящего момента.

Валы и оси можно рассчитывать на жесткость, но диаметр деталей в этом случае получается большим, чем при расчете на прочность. Расчет на изгибную жесткость состоит из определения углов наклона и прогибов упругой линии осей и валов и сравнения их с допускаемыми значениями. Следует отметить и сложность расчетов деталей на жесткость. Например, расчет валов на жесткость (задача а) при кручении производится по формуле

,

где — действительный угол закручивания вала, град; [] — допускаемый угол закручивания (можно принимать для большинства валов [] =15' на 1 м длины; для менее ответственных валов [] принимается до 2°); Мкркрутящий момент, Н • мм; l — длина скручиваемой части вала, мм; G — модуль упругости при сдвиге, МПа (для стали G = 8(104 МПа); Iр — полярный момент инерции сечения вала, мм4 ( — для круглого сечения и для кольцевого сечения).

Уточненный расчет валов на прочность, в случае возникновения такой необходимости, заключается в определении коэффициентов запаса для опасных сечений.

При нагружении соединения силами в плоскости (по поверхности) стыка деталей и в случаях установки штифта (цилиндрического гладкого стержня винта) без зазора и работы на срез проверочный расчет (задача а) штифта (винта) может осуществляться по формуле

,

где Р — срезающая сила, Н; d — диаметр штифта (стержня винта), мм; i — число стыков (количество штифтов или винтов) в соединении; [] — допускаемое напряжение среза, МПа.

Расчет на прочность шпоночных и шлицевых соединений заключается в сравнении фактически передаваемого крутящего момента с допускаемым моментом из условий прочности шпонок (шлиц).

Расчет на прочность шпоночных соединений (задача а) производится по формулам:

на смятие:

(для призматических шпонок);

(для сегментных шпонок);

на срез:

(для призматических и сегментных шпонок),

где Мкр — крутящий момент (рассчитывается по передаваемой мощности и частоте вращения вала), Н-мм; D — наружный диаметр вала, мм; h — высота призматической шпонки, мм; Кш — размер выступающей из паза части сегментной шпонки, мм; l — рабочая длина шпонки, мм; [] — допустимые напряжения смятия, МПа.

Проверочный расчет на прочность шлицевых соединений (задача а) может осуществляться по формулам:

на смятие:

(прямобочный профиль)

(эвольвентный профиль)

на срез:

(прямобочный и эвольвентный профили)

где Мкр — крутящий момент, Н-мм; z — число шлицев; h — высота поверхности контакта (для прямобочного профиля , здесь fш — фаска зуба и паза шпоночного соединения, по СТ СЭВ 188 - 75 фаска принимается равной 0,3. ..0,5 мм с допуском +0,2... + 0,3; для эвольвентных шлицев с центрированием по боковым поверхностям h = m, с центрированием по наружной цилиндрической поверхности h = 0,9m); D — наружный диаметр вала, мм; d — внутренний диаметр отверстия, мм; b — ширина шлица, мм; m — модуль эвольвентного соединения, мм; — коэффициент, учитывающий неравномерность распределения нагрузки по шлицам (принимается равным 0,7...0,8).

При необходимости расчеты на прочность сварных соединений, пружин, подшипников, клиноременных, зубчатых передач и других специфических сборочных единиц и деталей специальных приспособлений следует выполнять с помощью справочных и других литературных источников.

Пример.16.1. Рассчитать на прочность опасное звено приспособления (см. рис.16.1). Из рассмотрения данного приспособления можно прийти к выводу, что одной из наиболее нагруженных деталей является ось 6 стойки 9. Она воспринимает повышенные нагрузки, связанные с зажимом обрабатываемых заготовок. Направление действия создаваемой пневмоцилиндром силы меняется на противоположное посредством рычагов 13. При этом она увеличивается в несколько раз. Затем через штоки 10 и пяты 3 она передается на рычаг 4, получает направление в сторону зажима заготовок и вновь возрастает. Таким образом, на прочность целесообразно рассчитывать наиболее нагруженное звено (в описанном случае ось б). Ось 6 в отверстиях рычага 4 и стойки 9 установлена с зазором и будет работать на изгиб. В соответствии с принятым решением она изготавливается из стали 20Х с цементацией и закалкой до твердости 57...63 HRCэ. Вид нагрузки П (переменная). По табл. П28 напряжение [] для приведенного случая равно 220 МПа. Из силового расчета выявлено, что изгибающий момент УИИЗ, действующий на опасное звено приспособления, равен 10 800 Н-мм.

Минимальный диаметр оси можно рассчитать (задача б) по формуле:

мм.

В описанных условиях можно принять размер d=10 мм, что обеспечит более надежную работу оси 6 в приспособлении.

Рис. 16.1. Фрезерное многоместное приспособление для обработки торцов заготовок типа планок со схемой комбинированной передачи сил зажима.

Контрольные задания.

Задание 16.1.

По какой формуле проводится расчет на прочность детали в виде стержня круглого сечения, нагруженного осевой силой, по допускаемым напряжениям растяжения (сжатия)?

Задание 16.1.

По какой формуле проводится расчет на прочность валов и осей на изгиб (детали круглого сечения) с определения их диаметра?


 

А также другие работы, которые могут Вас заинтересовать

45341. Проблема распознавания образов 67.5 KB
  В своей повседневной жизни человек настолько легко справляется с задачами распознавания что это считается само собой разумеющимся. В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. За обучением следует процесс распознавания новых объектов который характеризует действия уже обученной системы.
45342. Проблемы и перспективы нейронных сетей 48 KB
  Проблемы интерпретируемости приводят к снижению ценности полученных результатов работы сети а проблема размерности к очень жестким ограничениям на количество выходных нейронов в сети на количество рецепторов и на сложность структуры взаимосвязей нейронов с сети. уже сегодня искусственные нейронные сети используются во многих областях но прежде чем их можно будет применять там где на карту поставлены человеческие жизни или значительные материальные ресурсы должны быть решены важные вопросы касающиеся надежности их работы. Некоторые...
45343. Процедурные модели предоставления знаний 74.5 KB
  Здесь имя или порядковый номер продукции во множестве продукций хранящихся в памяти системы. Q сфера применения продукции описывающая предметную область или ситуацию. Это позволяет систематизировать продукции что облегчает работу с системой продукций. Р условие применимости ядра продукции.
45344. Технология разработки экспертных систем 36 KB
  К разработке экспертных систем привлекаются специалисты из разных предметных областей а именно: эксперты той проблемной области к которой относятся задачи решаемые системой; инженеры по знаниям являющиеся специалистами по разработке систем искусственного интеллекта; программисты осуществляющие реализацию экспертной системы. Инженеры по знаниям помогают экспертам выявить и структурировать знания необходимые для работы экспертной системы выполняют работу по представлению знаний выбирают методы обработки знаний проводят выбор...
45345. Архитектура системы работы со знаниями 48 KB
  Различие между уровнями заключается в языке применяемом для представления знаний. Для работы со знаниями на любом из этих уровней используются следующие базовые компоненты: база знаний; редактор базы знаний; база данных со своей СУБД; решатель; подсистема настройки и управления; подсистема объяснения; диалоговая подсистема. В некоторых источниках совокупность средств обеспечивающих работу со знаниями называют системой управления базой знаний СУБЗ по аналогии с СУБД.
45346. Персептрон Розенблатта 53 KB
  В первоначальных вариантах исполнения персептрона соединения идущие от сузлов формировались случайным образом еще в процессе конструирования системы поэтому они определяли некоторые случайные свойства изображения. Как и в пандемониуме при обучении персептрона вычислялись данные о ценности каждого аузла. Как аузлы так и рузлы персептрона представляли собой математические нейроны которые были рассмотрены ранее. Веса синапсов идущих к рузлам изменялись в процессе обучения персептрона.
45347. КОМПЬЮТЕРНОЕ ТВОРЧЕСТВО 32 KB
  Например каждое слово поэмы состоит из букв которые могут быть закодированы 33 цифрами. При таком соответствии одна длинная строка цифр может рассматриваться как кодированная запись поэмы. Полотно картины можно расчертить на мельчайшие клетки и цвет каждой клетки закодировать цифрами.
45348. Моделирование в музыке 40.5 KB
  В памяти композитора существует множество различных мелодий накопленных им в течение жизни. И естественно полагать что фрагменты этих мелодий отдельные музыкальные фразы музыкальные инварианты осознанно или неосознанно используются композитором в его творческом процессе. Далее следует прочитать следующую за найденной фразой ноту приписать ее к текущей музыкальной фразе а первую ноту из этой фразы выдать в файл формируемых мелодий и вычеркнуть из текущей фразы так чтобы в ней попрежнему оставалось четыре ноты. В результате в файле...
45349. Модели представления знаний 64 KB
  Декларативная модель представления знаний основывается на предположении что проблема предоставления некоторой предметной области решается независимо от того как эти знания потом будут использоваться. Такую модель можно разделить на две части: статически описательные модели знаний и механизм вывода оперирующий этими структурами и практически независимый от их содержательного наполнения. Декларативные модели представления знаний Семантические сети Семантические сети были предложены американским психологом Куиллианом.