4642

Наближені обчислення, рекурентні співвідношення, обґрунтування коректності

Лабораторная работа

Информатика, кибернетика и программирование

Наближені обчислення, рекурентні співвідношення, обґрунтування коректності Постановка задачі Завдання:Обчислити значень функції на інтервалі Результати оформити у вигляді таблиці...

Украинкский

2012-11-23

108.5 KB

15 чел.

Наближені обчислення, рекурентні співвідношення, обґрунтування коректності

  1.  Постановка задачі

Завдання: Обчислити  значень функції = на інтервалі 

Результати оформити у вигляді таблиці 1:

 

 

 

 Похибка

 

 

Маємо:

 - наближені значення функції значення функції , обчислені за допомогою стандартних функцій компілятора;

- наближені значення функції , обчислені за допомогою певного степеневого ряду ;

похибка – величина ;

- кількість ітерацій або кількість членів в частковій сумі відповідного ряду.

Вказівки:

  •  кількість точок на інтервалі   не менше 10, розподіл точок не має значення (може бути як рівномірним, так і випадковим);
  •  для тригонометричних функцій значення аргументу приводити до величини ;
  •  для показникових функцій виділяти цілу частину аргументу, а ряди використовувати тільки для дробової частини;
  •  у якості точності  взяти “машинний нуль”  в околі 1.0 ;
  •  змінні з індексами не використовувати.
  1.  
    Аналіз задачі

План

  1.  Зчитуємо з екрану n-необхідну кількість обчислень.
    1.  Знаходимо машинний нуль
    2.  Для кожно значення х (вибираємо n значень з відомого інтервалу)
    3.   за формулою Тейлора розкладаємо як

3.1) Знаходимо наближені значеня функції f(x), обчислені за допомогою стандартних функцій компілятора

3.2) Знаходимо наближені значеня функції f(x), обчислені за допомогою певного степеневого ряду, записуючи рекурентне співвідношення. В циклі створюємо лічильник, щоб порахувати кількість ітерацій.

3.3) Знаходимо похибку: р =

3.4)Виводимо результати в таблицю.


3)
Лістинг програми

#include<stdio.h>

#include<math.h>

#include<conio.h>

main()

{

float x, a, b, fx, gx, p, n, m;

float s;

int k=1;

clrscr();

 while (1+s !=1)

 s=s/2;

printf("");

printf("┌───┬─────┬────┬────┬──┐\n");

printf(" x f(x) ┼ g(x)  Похибка┼ n ┤\n");

printf("├───┼─────┼────┼────┼──┤\n");

for (x=0.523; x<=0.785; x+=0.025 )

{

n=sin(x);

m=sqrt(x);

fx=n+m;

a=x;

k=2;

gx=sqrt(x)+a;

p=s;

while (k>=2 && s<=p)

 {

 a=-(a*(x*x/(2*n-2)*(2n-1)));

 g(x)=g(x)+a;

 p=fabs(gx-fx);

 k++;

 }

printf(" ├ %.3f │ %.2f │ %.2f │ %.8f │ %u ┤\n", x, fx, gx, p , k);}

printf(" └────┴────┴────┴────┴────┘\n");

return(0);

}

**Використовуємо змінні:

х – аргумент;

fx обчислюється за допомогою стандартних функцій компілятора;

gx – рекурентне співвідношення;

р – похибка;

s – машинний нуль;

k – кількість ітерацій;

4)Тестування програми

Тестування виконане для 10 значень із даного інтервалу, результати подані в таблиці.

У середовищі Turbo C вони виглядають ось так:


5. Документування програми

Мова інтерфейсу програми – англійська.

1)Інсталяція та виконання програми

Для використання програму необхідно запустити. Вона виведе таблицю результатів.

2) Склад пакету

Пакет включає в себе - source файл: лабораторної роботи та відкомпільовану програму

3) Використання програми

Програма потребує вводу одного натурального числа – кількості значень функції.

На виході програма виводить таблицю, що складається з таких стовпчиків:

Х – значення х;

F(x) – значення функції, знайдене за допомогою стандартних функцій компілятора;

G(x) – значення функції, обчислене за допомогою певного степеневого ряду, з використанням рекурентної функції;

ПОХИБКА – похибка;

n – кількість ітерацій при обчисленні.

 6. Висновок

 Під час виконання поставлених завдань було реалізоване знаходження функції за допомогою стандартних функцій компілятора та з використанням ітераційної формули, було проведене тестування та від лагодження побудованої програми та її наступне документування. Точність обчислення даної функції стандартними засобами компілятора майже не відрізняється від обчислення її за допомогою формули, тому що обрана формула обчислення використовується в FPU процесора. Похибка, якщо вона існує, близька до машинного нуля. Але бачимо, що з невеликим збільшенням Хn, відповідно з’являється похибка, яка завжди однакова. Це може бути недолік формули або АЛП комп’ютера. Але при невеликих значеннях ця похибка може нехтуватися. Також плюс у обчисленні цією формулою – швидкість у декілька кроків.

 7. Література

1) В. В. Зубенко, Г. А. Кияшко. Методичні рекомендації до виконання практичних і лабораторних робіт з дисципліни «Програмування» - К.: «Київський університет», 2005.

2) Б. Керниган, Д. Ритчи. «Мова програмування СІ » - М.: Фінанси і статистика,1992.

3) Т. А. Павловська. «С\С++. Програмування мовою високого рівня» - М.: 2005.


 

А также другие работы, которые могут Вас заинтересовать

64376. ПАТОГЕНЕЗ НАБРЯКУ-НАБУХАННЯ ГОЛОВНОГО МОЗКУ ТА ОБҐРУНТУВАННЯ ОПТИМАЛЬНОЇ ФАРМАКОТЕРАПІЇ ПРИ ТЯЖКІЙ ЧЕРЕПНО-МОЗКОВІЙ ТРАВМІ 511.5 KB
  У зазначений термін до патологічного процесу залучаються всі системи життєзабезпечення організму розвивається набрякнабухання мозку вторинне ушкодження центральної нервової системи ЦНС причинами якого є ішемія гіпоксія і токсемія...
64377. СУСПІЛЬНО-ГЕОГРАФІЧНІ ПРОЦЕСИ ЗАСЕЛЕННЯ ПІВНІЧНОЇ БЕССАРАБІЇ 770 KB
  Метою роботи є обгрунтування теоретико-методологічних основ суспільногеографічних на прикладі ретроспективноекістичних досліджень історикогеографічного регіону аналіз утворення поселень і формування поселенської мережі...
64378. СОРБЦІЙНО ЗДАТНІ МЕТАЛОВМІСНІ ГІДРОГЕЛІ НА ОСНОВІ КОПОЛІМЕРІВ ПОЛІВІНІЛПІРОЛІДОНУ 291.5 KB
  Перспективними для використання в згаданих галузях є гідрогельні металонаповнені матеріали на основі кополімерів полівінілпіролідону ПВП з метакрилатами оскільки відзначаються широким спектром фізико-механічних та фізико-хімічних властивостей.
64379. Патогенетичні особливості розвитку імунних, метаболічних та мікроциркуляторних порушень в дітей, хворих на гостру позалікарняну пневмонію 153 KB
  Достатньо частою формою поразки органів дихання у дітей є пневмонії Самсыгина Г. Але згідно до експертної оцінки вважають що захворюваність на гостру пневмонію складає від 4 до 20 випадків на 1000 дітей у віці від 1 місяця до 15 років...
64380. КРИМІНАЛЬНО-ВИКОНАВЧА СИСТЕМА У БОРОТЬБІ З «ВОРОГАМИ НАРОДУ» В ЗАХІДНІЙ УКРАЇНІ 179 KB
  Подруге потребує комплексної реконструкції і сам процес становлення спеціальних репресивних органів у структурі НКВС що займалися виявленням ворогів народу а також типологізація каральновиправних установ в яких вони відбували покарання.
64381. МЕТОД ВІДНОВЛЕННЯ ЕКСПЛУАТАЦІЙНИХ ЯКОСТЕЙ РОБОЧИХ РІДИН ФУНКЦІОНАЛЬНИХ ЕНЕРГЕТИЧНИХ СИСТЕМ АВІАЦІЙНИХ ТРАНСПОРТНИХ КОМПЛЕКСІВ В КВАЗІПОСТІЙНОМУ ЕЛЕКТРИЧНОМУ ПОЛІ 14.51 MB
  На частку рідинних енергетичних систем повітряних суден ПС припадає до 50. Це в першу чергу повязано з використанням палив олив і спеціальних рідин які не в повній мірі відповідають вимогам ДСТУ ГОСТ 172162004 який визначає ступінь конструктивної...
64382. ГЕОМЕТРИЧНЕ МОДЕЛЮВАННЯ РОЗПОДІЛУ ВІДБИТОЇ СОНЯЧНОЇ ЕНЕРГІЇ НА ПРИЙМАЧІ 229 KB
  Кількісна оцінка інтенсивності відбитого потоку дозволяє визначати зони розрідження і концентрації енергії. Розробити алгоритм побудови точкового каркаса поверхні розподілу ступеню концентрації відбитої енергії на приймачі з комп'ютерною реалізацією.
64383. ЕНЕРГОЗБЕРЕЖЕННЯ В ТЕПЛОМАСООБМІННИХ ПРОЦЕСАХ ОЧИЩЕННЯ ВИКИДІВ ВІД ПРОМИСЛОВИХ ОБЄКТІВ 782.14 KB
  В Україні й світовому співтоваристві однією з найгостріших проблем сучасності є зниження енергетичних витрат на системи очищення шкідливих викидiв обєктів промислової теплоенергетики.
64384. РОЗРОБКА БЛОКОВОЇ ЗЕРНОСУШАРКИ НА ОСНОВІ АВТОНОМНИХ ВИПАРЮВАЛЬНО-КОНДЕНСАЦІЙНИХ СИСТЕМ 872.5 KB
  Для сучасного зерносушіння характерні дві проблеми: високі енерговитрати й забруднення зерна продуктами згоряння. Витрати енергії на зерносушіння вище ніж енерговитрати при виробництві зерна. Досвід застосування у світовій практиці теплових труб і термосифонів...