46552

Основные закономерности изнашивания. Работоспособность деталей и узлов машин

Доклад

Производство и промышленные технологии

Виды изнашивания в машинах Механическое изнашивание изнашивание в результате механических воздействий. Абразивное изнашивание механическое изнашивание материала в результате режущего или царапающего действия твердых тел или частиц. Абразивная эрозия гидро и газоабразивное изнашивание основной вид изнашивания деталей насосов трубопроводов арматуры дымососов вентиляторов эжекторов пескоструйныхаппаратов в результате воздействия твердых тел или частиц увлекаемых потоком жидкости или газа. Усталостное изнашивание часто является...

Русский

2013-11-23

19.89 KB

48 чел.

  1.   Основные закономерности изнашивания. Работоспособность деталей и узлов машин.

Рис. 2 8. Виды изнашивания в машинах

Механическое изнашивание — изнашивание в результате механических воздействий.

Абразивное изнашивание — механическое изнашивание материала в результате режущего или царапающего действия твердых тел или частиц.Очень опасен износ поверхностей твердыми подвижными частицами, попадающими между трущимися поверхностями. Абразивная эрозия, гидро- и газоабразивное изнашивание — основной вид изнашивания деталей насосов, трубопроводов, арматуры, дымососов, вентиляторов, эжекторов, пескоструйныхаппаратов в результате воздействия твердых тел или частиц, увлекаемых потоком жидкости или газа.

При усталостном изнашивании поверхности трения или отдельных ее участков повторное деформирование микрообъемов материала приводит к возникновению трещин и отделению частиц. Это особенно проявляется при трении качения: шарик или ролик, перемещаясь по поверхности кольца подшипника, гонит перед собой волну сжатия материала, а сзади создает зону растяжения. Многократно повторяющиеся знакопеременные нагрузки вызывают явления контактной усталости.

Усталостное изнашивание часто является одной из причин выхода из строя основной опоры вертлюга, основной и вспомогательной опор ротора, шестерен бурового насоса и ротора, а также элементов подшипников скольжения.

Кавитационное  изнашивание  поверхности происходит при относительном движении  твердого тела в жидкости в  условиях  кавитации.При неправильно. выбранном режиме работы гидравлической машины в потоке жидкости могут образоваться пузырьки пара или газа, ликвидация которых происходит бурно с гидравлическими ударами.

В результате сочетания кавитационно-эрозионного и гидроабразивного видов изнашивания под действием потока промывочной жидкости, как правило, выходят из строя отводы вертлюгов.

Молекулярно-механическое изнашивание - взаимодействие между поверхностями, наход-ящимися друг от друга на расстоянии действия атомных сил равном 3—5 А° (3—5-10~7 мм),весьма активно (более 6 мкм/ч) — коэффициент трения при схватывании возрастает до 4—6 единиц, образуются глубокие задиры поверхностей и может быть заклинивание.

Особенно опасны явления схватывания при высоких температурах. В этом случае в поверхностных слоях металла происходит рекристаллизация, многократная первичная и вторичная закалка и отпуск, т. е. в корне изменяются структурные и механические свойства материала. Изменения захватывают слой глубиной 5—80 мкм, скорость изнашивания достигает 5 мкм/ч. Случаи подобного изнашивания характерны для гильз цилиндров, тарелок клапанов, деталей механизма распределения ДВС.

При коррозионно-механическом изнашивании среда, окружающая трущиеся поверхности, вступает с их материалом в химическое взаимодействие, а в результате перемещения поверхностей удаляются продукты коррозии и обнажаются чистые поверхности деталей. Этот процесс многократно повторяется- Если поверхности неподвижны, продукты коррозии не удаляются, иногда образуя антикоррозионный защитный слой.

Окислительное изнашивание, протекающее при наличии на поверхностях трения защитных пленок, которые образовались в результате взаимодействия материала с кислородом, является наиболее распространенным и наименее опасным видом изнашивания. Интенсивность окислительного изнашивания небольшая (менее 0,05 мкм/ч).

В некоторых случаях поверхности работают при небольших относительных перемещениях, вызванных вибрацией системы — посадочные поверхности шестерен, цепных колес, подшипников качения, деталей втулочно-роликовых цепей и др. При этом возникает так называемая фреттинг-коррозия.


 

А также другие работы, которые могут Вас заинтересовать

81566. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры. Роль аскорбиновой кислоты в гидоксилировании пролина и лизина 108.5 KB
  В межклеточном матриксе молекулы коллагена образуют полимеры называемые фибриллами коллагена. Фибриллы коллагена обладают огромной прочностью и практически нерастяжимы. Молекулы коллагена состоят из трёх полипептидных цепей называемых αцепями. Первичная структура αцепей коллагена необычна так как каждая третья аминокислота в полипептидной цепи представлена глицином около 1 4 аминокислотных остатков составляют пролин или 4гидроксипролин около 11 аланин.
81567. Особенности биосинтеза и созревания коллагена. Проявления недостаточности витамина С 106.89 KB
  Синтез и созревание коллагена сложный многоэтапный процесс начинающийся в клетке а завершающийся в межклеточном матриксе. Синтез и созревание коллагена включают в себя целый ряд посттрансляционных изменений: гидроксилирование пролина и лизина с образованием гидроксипролина Hyp и гидроксилизина Hyl; гликозилирование гидроксилизина; частичный протеолиз отщепление сигнального пептида а также N и Сконцевых пропептидов; образование тройной спирали. Синтез полипептидных цепей коллагена.
81568. Особенности строения и функции эластина 103.27 KB
  Эластин содержит довольно много пролина и лизина но лишь немного гидроксипролина; полностью отсутствует гидроксилизин. В образовании этих сшивок участвуют остатки лизина двух трёх или четырёх пептидных цепей. Предполагают что эти гетероциклические соединения формируются следующим образом: вначале 3 остатка лизина окисляются до соответствующих εальдегидов а затем происходит их соединение с четвёртым остатком лизина с образованием замещённого пиридинового кольца. Окисление остатков лизина в εальдегиды осуществляется медьзависимой...
81569. Гликозаминогликаны и протеогликаны. Строение и функции. Роль гиалуроновой кислоты в организации межклеточного матрикса 192.62 KB
  Протеогликаны высокомолекулярные соединения состоящие из белка 510 и гликозаминогликанов 9095. Протеогликаны отличаются от большой группы белков которые называют гликопротеинами. Гликозаминогликаны и протеогликаны являясь обязательными компонентами межклеточного матрикса играют важную роль в межклеточных взаимодействиях формировании и поддержании формы клеток и органов образовании каркаса при формировании тканей.
81570. Адгезивные белки межклеточного матрикса: фибронектин и ламинин, их строение и функции. Роль этих белков в межклеточных взаимодействиях и развитии опухолей 104.14 KB
  К первой группе белков с выраженными адгезивными свойствами относят фибронектин ламинин нидоген фибриллярные коллагены и коллаген IV типа; их относят к белкам зрелой соединительной ткани. Фибронектин. Фибронектин один из ключевых белков межклеточного матрикса неколлагеновый структурный гликопротеин синтезируемый и выделяемый в межклеточное пространство многими клетками.
81571. Структурная организация межклеточного матрикса. Изменения соединительной ткани при старении, коллагенозах. Роль коллагеназы при заживлении ран. Оксипролинурия 112.48 KB
  Роль коллагеназы при заживлении ран. Коллаген IX типа антипараллельно присоединяется к фибриллам коллагена II типа. Его глобулярный НК4домен основный он не связан с фибриллами коллагена II типа и поэтому к нему может присоединяться такой компонент матрикса как гиалуроновая кислота. Микрофибриллы которые образуются тетрамерами коллагена VI типа присоединяются к фибриллам коллагена II типа и к гиалуроновой кислоте.
81572. Важнейшие белки миофибрилл: миозин, актин, актомиозин, тропомиозин, тропонин, актинин. Молекулярная структура миофибрилл 116.56 KB
  Молекулярная масса миозина скелетных мышц около 500000 для миозина кролика 470000. Молекула миозина имеет сильно вытянутую форму длину 150 нм. Легкие цепи находящиеся в головке миозиновой молекулы и принимающие участие в проявлении АТФазнойактивности миозина гетерогенны по своему составу. Количество легких цепей в молекуле миозина у различных видов животных и в разных типах мышц неодинаково.
81573. Биохимические механизмы мышечного сокращения и расслабления. Роль градиента одновалентных ионов и ионов кальция в регуляции мышечного сокращения и расслабления 107.85 KB
  В настоящее время принято считать что биохимический цикл мышечного сокращения состоит из 5 стадий: 1 миозиновая головка может гидролизовать АТФ до АДФ и Н3РО4 Pi но не обеспечивает освобождения продуктов гидролиза. Актомиозиновая связь имеет наименьшую энергию при величине угла 45 поэтому изменяется угол миозина с осью фибриллы с 90 на 45 примерно и происходит продвижение актинана 1015 нм в направлении центра саркомера; 4 новая молекула АТФ связывается с комплексом миозинFактин; 5 комплекс миозинАТФ обладает низким...
81574. Саркоплазматические белки: миоглобин, его строение и функции. Экстрактивные вещества мышц 122.6 KB
  Концентрация адениновых нуклеотидов в скелетной мускулатуре кролика в микромолях на 1 г сырой массы ткани составляет: АТФ 443 АДФ 081АМФ 093. в мышечной ткани по сравнению с концентрациейадениновых нуклеотидов очень мало. К азотистым веществам мышечной ткани принадлежат имидазолсодержащие дипептиды карнозин и ансерин.; метилированное производное карнозина ансерин был обнаружен в мышечной ткани несколько позже.