467

Градієнтний метод числової оптимізації задач нелінійного програмування

Лабораторная работа

Информатика, кибернетика и программирование

Застосування градієнтного методу, коли обмеження на область зміни змінних х відсутні. Застосування градієнтного методу, коли наявні обмеження на область зміни змінних х. ознайомлення з градієнтним методом числової оптимізації, набуття навиків розв’язку та аналізу задач нелінійного програмування градієнтним методом.

Украинкский

2013-01-06

1.16 MB

130 чел.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ  УКРАЇНИ

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ “ЛЬВІВСЬКА ПОЛІТЕХНІКА”

Кафедра АСУ

Звіт

із лабораторної роботи №13

«Градієнтний метод числової оптимізації                                                                                          задач нелінійного програмування»

з дисципліни

“Математичні методи дослідження операцій”

Виконав:

студент групи КН – 22

Приступа Олег

Прийняв:

старший викладач Балич Б.І.

Львів – 2012


Мета роботи: ознайомлення з градієнтним методом числової оптимізації, набуття навиків  розв’язку та аналізу задач нелінійного програмування градієнтним методом.

  1.  Короткі теоретичні відомості

Градієнтні методи належать до наближених числових методів розв’язування задач нелінійного програмування, оскільки дають точний розв’язок за нескінченне і лише в окремих випадках за скінченне число кроків. З їх використанням  можна розв’язувати будь-яку задачу нелінійного програмування, знаходячи, як правило, лише локальний екстремум. Тому застосування цих методів дає найбільший ефект для розв’язування задач випуклого програмування, де локальний екстремум є одночасно і глобальним.

1.1.  Застосування градієнтного методу, коли обмеження на область зміни змінних х відсутні

Розглянемо задачу максимізації функції f(х), коли обмеження на область зміни змінних х відсутні. Пошук екстремального значення функції f(х) можна починати з будь-якого допустимого розв’язку, наприклад, з точки хk = (x1k; ...; хпk).

Градієнтом f(x) функції f(х) в точці хk називається вектор, координатами якого є значення в цій точці частинних похідних першого порядку відповідної змінної, тобто

                                          

Градієнт функції в цій точці вказує напрямок найшвидшого зростання функції  f (х).

Переміщення з точки хk вздовж градієнту в нову точку хk+1 відбувається по прямій, рівняння якої

                                         .                                           (1)

де k  числовий параметр, від величини якого залежить довжина кроку переміщення . Величина k, при якій досягається найбільший приріст функції, може бути визначена з необхідної умови екстремуму функції

                                                                                    (2)

Чергову точку   хk+1  визначаємо після обчислення параметру  k  (для цього підставляємо значення  k     в формулу (1) на пошуковій траєкторії). В цій ( хk+1 ) точці знову знаходимо градієнт, а рух відбувається далі по прямій хk+2 = хk+1 + k+1f(xk+1) у напрямку нового градієнту f (xk+2) до точки хk+2, в якій досягається найбільше значення функції f(х) в цьому напрямку і т.д. Розв’язування триватиме доти, поки не буде досягнута точка х*, в якій градієнт функції дорівнює нулю. В цій точці х* цільова функція f(х*) і буде набувати максимального значення.

Приклад 1. Нехай потрібно визначити точку максимуму функції , коли процес розв’язування розпочинається з точки x0 = (4;4).

Розв’язування. Знайдемо частинні похідні функції  f(x)

; .

Градієнт функції в точці х0 буде

.

Перемістимось з точки  х0  вздовж градієнту  f(х0) в нову точку х1:

х1 = x0 + λ0 f (х0) = (4; 4) + 0 (–6; –4) = (4 – 6 0; 4 – 4 0).

Градієнт функції в точці х1 дорівнює

f (х1) = [2 – 2 (4 – 60); 4 – 2 (4 – 40)] = (– 6 +120; – 4 + 80).

З необхідної умови екстремуму одержуємо рівняння

,

звідки = 0,5.

Оскільки   ,    то знайдене значення х1 є точкою максимуму функції f (х1).

Враховуючи = 0,5, визначимо координати точки х1 на пошуковій траєкторії

х1 = (4 – 6·0,5; 4 – 4·0,5) = (1; 2)

та градієнт f (х1) в цій точці х1        f (х1) = (2 – 2·1; 4 – 2·2) = (0; 0).

Оскільки градієнт f (x1) має нульові координати, робимо висновок про те, що х1 = (1; 2) є точкою, в якій цільова функція досягає максимального значення  f(х1) = 2·1+ 4·2 – 1– 4 = 5                               ( в початковій точці f(x0) = – 8 ).

На мал. 1 наведена графічна інтерпретація даної задачі.

Мал. 1.

1.2.  Застосування градієнтного методу, коли наявні обмеження на область зміни змінних х

Тепер розглянемо випадок розв’язування задачі нелінійного програмування з обмеженнями. Припустимо, що задача полягає в наступному: необхідно знайти максимум функції  f(х) за обмежень

                                                                     ,  ,                                                         (3)

,.

Крім того, будемо вважати, що функція  f(х) є  ввігнутою диференційованою функцією.

При розв’язуванні подібних задач трапляються два випадки:

1) цільова функція має єдиний екстремум, і він знаходиться всередині області допустимих розв’язків. Тоді процес розв’язування задачі (пошук оптимальної точки х*) нічим не відрізняється від уже розглянутого;

2) цільова функція набуває свого екстремального значення в точці, що знаходиться на границі допустимої області. В цьому випадку послідовність розв’язування задачі наступна. Якщо початкова точка  хk лежить всередині допустимої області (всі обмеження виконуються як строгі нерівності), то переміщуватися потрібно в напрямку градієнту. Але координати чергової точки  повинні задовольняти обмеженням (3), тобто повинні виконуватись нерівності

                                                             (4)

Розв’язуючи систему (4) лінійних нерівностей, знаходимо проміжок  допустимих значень параметру , при яких точка x1 буде належати допустимій області. Значення , яке одержується в результаті розв’язування рівняння (2)

                                        ,

повинно належати проміжку . Якщо значення  виходить за межі проміжку, то за  приймається . При цьому чергова точка пошукової траєкторії опиняється на граничній гіперплощині, що відповідає нерівності системи (4), виходячи з якої при розв’язанні системи отримано значення .

Якщо початкова точка хk лежить на граничній гіперплощині (або чергова точка пошукової траєкторії опинилась на граничній траєкторії), то напрямок переміщення визначається із розв’язку наступної допоміжної задачі математичного програмування:

                                                                                   (5)

                                                                                                              (6)

для тих і, при яких

                                                ,                                                              (7)

                                                   ,                                                              (8)

де ;  .

Умова (7) визначає належність точки хk границі допустимої області. Умова (6) означає те, що переміщення з точки хk по вектору rk буде відбуватися всередину допустимої області або по її границі, а умова (8) необхідна для обмеження величини rk. Для наступної точки пошукової траєкторії

знаходиться значення параметра . При цьому використовується необхідна умова екстремуму:

.

Процес розв’язування припиняється при досягненні точки, в якій

.

Приклад 2. Максимізувати  за таких обмежень

,

Оптимізаційний пошук почати з точки x0 = (1; 0,5).

Розв’язування. Точка x0 = (1; 0,5) лежить всередині допустимої області, значення функції в точці x0  f(x0) = 8,75. За напрямок переміщення в наступну точку  x1  приймаємо напрямок градієнту  в точці x0 = (1; 0,5).

Градієнт у точці х0 дорівнює . Виходячи з цього, можна записати координати наступної точки

.

Визначимо проміжок допустимих значений для параметру , при яких точка x1 буде належати допустимій області. В цьому випадку система нерівностей (4) має вигляд

З розв’язку цієї системи знаходимо проміжок . Розв’язавши рівняння

,

визначимо значення параметру , при якому приріст функції досягає найбільшої величини. Але значення не належить проміжку, тому приймаємо .

Нова точка x1 = (1,36; 0,95) знаходиться на граничній прямій, яка визначається другим обмеженням–нерівністю (тією нерівністю, якій відповідає значення ). В точці x1 значення функції. Оскільки точка х1 лежить на граничній прямій, то напрямок переміщення в наступну точку х2 визначаємо за вектором r1 (рух в напрямку градієнта виводить з допустимої області). Для визначення координат вектора r1 запишемо допоміжну задачу (5) – (8):

максимізувати

за обмежень

;

.

Система рівнянь цієї задачі має два розв’язки: (0,5568;–0,8352) і (–0,5568; 0,8352). Підставляючи ці розв’язки у функцію , одержуємо, що максимальне значення функції і досягається при (–0,5568; 0,8352), тобто переміщуватися з х1 треба вздовж вектору                               r1 = (–0,5568; 0,8352)  по другій граничній прямій (мал. 2). Координати наступної точки х2 дорівнюють

,

а градієнт

.

Знову визначаємо проміжок допустимих значень параметра , при яких точка х2 буде належати допустимій області.

До системи обмежень, які повинна задовольняти точка х2, не увійде друге обмеження, оскільки ця точка лежить на граничній прямій, визначеній цим обмеженням. Розв’язуючи дану систему, знаходимо проміжок

.

З використанням необхідної умови екстремуму

отримуємо . Але значення  не належить проміжку , тому приймаємо . Нова точка х2 = (1,36-0,557х1.01; 0,95+0,835х1,01)=(0,8; 1,8) лежить на перетині двох граничних прямих, які відповідають першій і другій нерівностям системи обмежень. У цій точці функція набуває значення

.

Визначимо напрямок переміщення з точки х2 – вектор r2 = (r21; r22):

максимізувати

за обмежень

;

.

Система рівнянь задачі має розв’язок r2 = (0; 0). Підставляючи одержаний розв’язок у функцію T, дістаємо, що максимум T = 0, а це означає те, що х2 є точкою максимуму цільової функції в допустимій області, тобто х2 = х* і max f (х*) = 12,68. Як видно з мал. 2, лінія рівня f(х)дотикається до границі допустимої області в точці х2.

Мал. 2

  1.  Порядок роботи:

Номер завдання відповідає порядковому номеру студента в деканатському журналі старости.

  1.   Розв’язати аналітично задану задачу нелінійного програмування, супроводжуючи розв’язок графічною ілюстрацією.
  2.   Побудувати блок-схему алгоритму рішення задачі.
  3.  Реалізувати алгоритм на одній з мов програмування та відшукати оптимальний розв’язок задачі.

Індивідуальне завдання:

Варіант 20

 


Розвязування задачі аналітично

Блок схема алгоритму:

Лістинг програми на С#:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace Gradient

{

   public partial class Form1 : Form

   {

       public Form1()

       {

           InitializeComponent();

       }

       private void button1_Click(object sender, EventArgs e)

       {

           gradient();

       }

       

       double[] x1= new double[1000];

       double[] x2 = new double[1000];

       double err = 0.0001;

       double ak = 0.05;

       double func(double x1, double x2)

       {

        return 4*x1*x1 + x2*x2 - 4*x1 + 2*x2;

       }

       double funcdx1(double x1, double x2)

       {

        return 8*x1 - 4;

       }

       double funcdx2(double x1 ,double x2)  

       {

        return 2*x2 + 2;

       }

       void gradient()

       {

        double xpr1 = 0, xpr2 = 0, funpro = 0;

        int i = 0;

           double xnt1 = double.Parse(textBox1.Text);

           double xnt2 = double.Parse(textBox2.Text);

           richTextBox1.Text = "№ " + "\t X1  " + "\t   X2 " + "\t   F( X1; X2)" + "\n";

           do

        {

         i++;

         xnt1 = xpr1-ak*funcdx1(xpr1, xpr2);

         xnt2 = xpr2-ak*funcdx2(xpr1, xpr2);

         funpro = funcdx1(xnt1, xnt2)+funcdx2(xnt1, xnt2);

         xpr1 = xnt1;

         xpr2 = xnt2;

               richTextBox1.Text += i.ToString("") +

                  "      " + xnt1.ToString("0.000000") + "      " + xnt2.ToString("0.000000")

                  + "      " + func(xnt1, xnt2).ToString("0.000000") + "\n";

               

        } while( Math.Abs(funpro) > err);

           label6.Text = "Minimum in:  ( " + xnt1.ToString("0.00") + " ; " + xnt2.ToString("0.00") + " )"+ "\n      F(x1,x2)=   " + func(xnt1, xnt2).ToString("0.00");

       }

       private void вихідToolStripMenuItem_Click(object sender, EventArgs e)

       {

           this.Close();

       }

       private void проПрограмуToolStripMenuItem_Click(object sender, EventArgs e)

       {

           AboutBox1 a = new AboutBox1();

           a.Show();

       }

   }

}

Форма Form1.cs

Форма AboutBox1.cs

Реалізація:


СПИСОК ЛІТЕРАТУРИ

1. Барінський А.Ф. і ін. Математичне програмування та дослідження операцій. – Л.: Інтелект- Захід, 2008. – 588с.: іл.

2. Барінський А.Ф. і ін. Математичне програмування. – Л.: Інтелект-Захід, 2004. – 448с.: іл.

3. Зайченко Ю.П. Дослідження операцій. – К.: ДМК Пресс, 2006. – 576с.: іл.

4. Долженков В.А., Колесников Ю.В. Microsoft Excel 2000. – СПб.: БХВ-Петербург, 2001. – 1088с.

5. Кудрявцев Е.М. Mathcad 2000 Pro. – М.: ДМК Пресс, 2001. – 576с.

6. Таха Хэмди А. Введение в исследование операций, 6-е издание: Пер. с англ. – М.: Издательский дом «Вильямс», 2001. – 912с.: ил.

7. Наконечний С. І., Савіна С. С. Математичне програмування: Навч. посіб. — К.: КНЕУ, 2003. — 452 с.

Висновок: на цій лабораторній роботі я ознайомився з градієнтним методом числової оптимізації, набув навиків розв’язку та аналізу задач нелінійного програмування градієнтним методом та розробив конкурентоспроможну програму оптимізації градієнтним способом.


 

А также другие работы, которые могут Вас заинтересовать

44588. Наиболее распространенные стеки протоколов 32.5 KB
  Стек TCP IP включает в себя два основных протокола: TCP Trnsmission Control Protocol протокол для гарантированной доставки данных разбитых на последовательность фрагментов. IP Internet Protocol протокол для передачи пакетов относится к разряду сетевых протоколов. Стек TCP IP является промышленным стандартным набором протоколов которые обеспечивают связь в неоднородной среде т.
44589. Передача данных по сети 53.5 KB
  Пример передачи данных 1 Компьютер-отправитель устанавливает соединение с принтсервером. Если бы использовался более сложный протокол и соответствующие ему сетевые службы то время передачи увеличилось бы но зато повысилась бы достоверность передачи. Указанный в пакете адрес отправителя в этом случае использовался бы сетевой службой для формирования подтверждения и передачи его соответствующему приемнику.
44590. Стандарт 10BaseT 39.5 KB
  ЛВС стандарта 10BseT может обслуживать до 1024 компьютеров. Сеть стандарта 10BseT Достоинством является возможность использования распределительных стоек и панелей коммутации что позволяет легко перекоммутировать сеть или добавить новый узел без остановки работы сети.
44591. Стандарт 10Base2 59 KB
  С использованием репитеров может быть увеличена общая протяженность сети введением дополнительных сегментов. Два из пяти сегментов являются межрепитерными связями и служат только для увеличения длины сети . Максимальное число компьютеров до 1024 а общая длина сети до 925м.
44592. Стандарт 10Base5 38.5 KB
  Главный кабель к которому подключаются трансиверы для связи с РС имеет длину до 500 м и возможность подключения до 100 компьютеров. С использованием репитеров которые также подключаются к магистральному сегменту через трансиверы общая длина сети может составить 2500 м.
44593. Стандарт 10BaseFL 43 KB
  Сеть стандарта 10BseFL Особенность этих трансиверов в том что их передатчики преобразуют электрические сигналы от ЭВМ в световые импульсы а приемники световые в электрические. Популярность использования 10BseFL обусловлена: высокой помехозащищенностью; возможностью прокладки кабеля между репитерами на большие расстояния т.
44594. Стандарт 100BaseX Ethernet 40.5 KB
  Его особенностью является то что он сохранил стандартный для Ethernet метод доступа CSM CD от которого отходили разработчики других технологий повышенной скорости передачи в сети. Сохранение метода доступа означает что имеющиеся в наличие драйверы для Ethernet будут работать без изменений. Преимуществом этой технологии появившейся в конце 1993 года является то что степень ее совместимости с Ethernetсетями позволяет интегрировать ее в эти сети с помощью двухскоростных сетевых адаптеров или мостов.
44596. Сетевые архитектуры ArcNet и ArcNet Plus 48 KB
  Физическая топология звезда шина звезда шина; логическая топология упорядоченное кольцо; широкополосная передача данных 25 Мбит с и 20 Мбит с для rcNet Plus; метод доступа маркерный; средой передачи может быть: коаксиальный кабель длиной 600 м при звезде и 300 м при шине; витая пара максимальная длина 244 м при звезде и шине; Компьютеры могут быть коаксиальным кабелем связаны в шину или в иных случаях подключены к концентраторам которые могут быть: пассивными; активными; интеллектуальными....