467

Градієнтний метод числової оптимізації задач нелінійного програмування

Лабораторная работа

Информатика, кибернетика и программирование

Застосування градієнтного методу, коли обмеження на область зміни змінних х відсутні. Застосування градієнтного методу, коли наявні обмеження на область зміни змінних х. ознайомлення з градієнтним методом числової оптимізації, набуття навиків розв’язку та аналізу задач нелінійного програмування градієнтним методом.

Украинкский

2013-01-06

1.16 MB

130 чел.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ  УКРАЇНИ

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ “ЛЬВІВСЬКА ПОЛІТЕХНІКА”

Кафедра АСУ

Звіт

із лабораторної роботи №13

«Градієнтний метод числової оптимізації                                                                                          задач нелінійного програмування»

з дисципліни

“Математичні методи дослідження операцій”

Виконав:

студент групи КН – 22

Приступа Олег

Прийняв:

старший викладач Балич Б.І.

Львів – 2012


Мета роботи: ознайомлення з градієнтним методом числової оптимізації, набуття навиків  розв’язку та аналізу задач нелінійного програмування градієнтним методом.

  1.  Короткі теоретичні відомості

Градієнтні методи належать до наближених числових методів розв’язування задач нелінійного програмування, оскільки дають точний розв’язок за нескінченне і лише в окремих випадках за скінченне число кроків. З їх використанням  можна розв’язувати будь-яку задачу нелінійного програмування, знаходячи, як правило, лише локальний екстремум. Тому застосування цих методів дає найбільший ефект для розв’язування задач випуклого програмування, де локальний екстремум є одночасно і глобальним.

1.1.  Застосування градієнтного методу, коли обмеження на область зміни змінних х відсутні

Розглянемо задачу максимізації функції f(х), коли обмеження на область зміни змінних х відсутні. Пошук екстремального значення функції f(х) можна починати з будь-якого допустимого розв’язку, наприклад, з точки хk = (x1k; ...; хпk).

Градієнтом f(x) функції f(х) в точці хk називається вектор, координатами якого є значення в цій точці частинних похідних першого порядку відповідної змінної, тобто

                                          

Градієнт функції в цій точці вказує напрямок найшвидшого зростання функції  f (х).

Переміщення з точки хk вздовж градієнту в нову точку хk+1 відбувається по прямій, рівняння якої

                                         .                                           (1)

де k  числовий параметр, від величини якого залежить довжина кроку переміщення . Величина k, при якій досягається найбільший приріст функції, може бути визначена з необхідної умови екстремуму функції

                                                                                    (2)

Чергову точку   хk+1  визначаємо після обчислення параметру  k  (для цього підставляємо значення  k     в формулу (1) на пошуковій траєкторії). В цій ( хk+1 ) точці знову знаходимо градієнт, а рух відбувається далі по прямій хk+2 = хk+1 + k+1f(xk+1) у напрямку нового градієнту f (xk+2) до точки хk+2, в якій досягається найбільше значення функції f(х) в цьому напрямку і т.д. Розв’язування триватиме доти, поки не буде досягнута точка х*, в якій градієнт функції дорівнює нулю. В цій точці х* цільова функція f(х*) і буде набувати максимального значення.

Приклад 1. Нехай потрібно визначити точку максимуму функції , коли процес розв’язування розпочинається з точки x0 = (4;4).

Розв’язування. Знайдемо частинні похідні функції  f(x)

; .

Градієнт функції в точці х0 буде

.

Перемістимось з точки  х0  вздовж градієнту  f(х0) в нову точку х1:

х1 = x0 + λ0 f (х0) = (4; 4) + 0 (–6; –4) = (4 – 6 0; 4 – 4 0).

Градієнт функції в точці х1 дорівнює

f (х1) = [2 – 2 (4 – 60); 4 – 2 (4 – 40)] = (– 6 +120; – 4 + 80).

З необхідної умови екстремуму одержуємо рівняння

,

звідки = 0,5.

Оскільки   ,    то знайдене значення х1 є точкою максимуму функції f (х1).

Враховуючи = 0,5, визначимо координати точки х1 на пошуковій траєкторії

х1 = (4 – 6·0,5; 4 – 4·0,5) = (1; 2)

та градієнт f (х1) в цій точці х1        f (х1) = (2 – 2·1; 4 – 2·2) = (0; 0).

Оскільки градієнт f (x1) має нульові координати, робимо висновок про те, що х1 = (1; 2) є точкою, в якій цільова функція досягає максимального значення  f(х1) = 2·1+ 4·2 – 1– 4 = 5                               ( в початковій точці f(x0) = – 8 ).

На мал. 1 наведена графічна інтерпретація даної задачі.

Мал. 1.

1.2.  Застосування градієнтного методу, коли наявні обмеження на область зміни змінних х

Тепер розглянемо випадок розв’язування задачі нелінійного програмування з обмеженнями. Припустимо, що задача полягає в наступному: необхідно знайти максимум функції  f(х) за обмежень

                                                                     ,  ,                                                         (3)

,.

Крім того, будемо вважати, що функція  f(х) є  ввігнутою диференційованою функцією.

При розв’язуванні подібних задач трапляються два випадки:

1) цільова функція має єдиний екстремум, і він знаходиться всередині області допустимих розв’язків. Тоді процес розв’язування задачі (пошук оптимальної точки х*) нічим не відрізняється від уже розглянутого;

2) цільова функція набуває свого екстремального значення в точці, що знаходиться на границі допустимої області. В цьому випадку послідовність розв’язування задачі наступна. Якщо початкова точка  хk лежить всередині допустимої області (всі обмеження виконуються як строгі нерівності), то переміщуватися потрібно в напрямку градієнту. Але координати чергової точки  повинні задовольняти обмеженням (3), тобто повинні виконуватись нерівності

                                                             (4)

Розв’язуючи систему (4) лінійних нерівностей, знаходимо проміжок  допустимих значень параметру , при яких точка x1 буде належати допустимій області. Значення , яке одержується в результаті розв’язування рівняння (2)

                                        ,

повинно належати проміжку . Якщо значення  виходить за межі проміжку, то за  приймається . При цьому чергова точка пошукової траєкторії опиняється на граничній гіперплощині, що відповідає нерівності системи (4), виходячи з якої при розв’язанні системи отримано значення .

Якщо початкова точка хk лежить на граничній гіперплощині (або чергова точка пошукової траєкторії опинилась на граничній траєкторії), то напрямок переміщення визначається із розв’язку наступної допоміжної задачі математичного програмування:

                                                                                   (5)

                                                                                                              (6)

для тих і, при яких

                                                ,                                                              (7)

                                                   ,                                                              (8)

де ;  .

Умова (7) визначає належність точки хk границі допустимої області. Умова (6) означає те, що переміщення з точки хk по вектору rk буде відбуватися всередину допустимої області або по її границі, а умова (8) необхідна для обмеження величини rk. Для наступної точки пошукової траєкторії

знаходиться значення параметра . При цьому використовується необхідна умова екстремуму:

.

Процес розв’язування припиняється при досягненні точки, в якій

.

Приклад 2. Максимізувати  за таких обмежень

,

Оптимізаційний пошук почати з точки x0 = (1; 0,5).

Розв’язування. Точка x0 = (1; 0,5) лежить всередині допустимої області, значення функції в точці x0  f(x0) = 8,75. За напрямок переміщення в наступну точку  x1  приймаємо напрямок градієнту  в точці x0 = (1; 0,5).

Градієнт у точці х0 дорівнює . Виходячи з цього, можна записати координати наступної точки

.

Визначимо проміжок допустимих значений для параметру , при яких точка x1 буде належати допустимій області. В цьому випадку система нерівностей (4) має вигляд

З розв’язку цієї системи знаходимо проміжок . Розв’язавши рівняння

,

визначимо значення параметру , при якому приріст функції досягає найбільшої величини. Але значення не належить проміжку, тому приймаємо .

Нова точка x1 = (1,36; 0,95) знаходиться на граничній прямій, яка визначається другим обмеженням–нерівністю (тією нерівністю, якій відповідає значення ). В точці x1 значення функції. Оскільки точка х1 лежить на граничній прямій, то напрямок переміщення в наступну точку х2 визначаємо за вектором r1 (рух в напрямку градієнта виводить з допустимої області). Для визначення координат вектора r1 запишемо допоміжну задачу (5) – (8):

максимізувати

за обмежень

;

.

Система рівнянь цієї задачі має два розв’язки: (0,5568;–0,8352) і (–0,5568; 0,8352). Підставляючи ці розв’язки у функцію , одержуємо, що максимальне значення функції і досягається при (–0,5568; 0,8352), тобто переміщуватися з х1 треба вздовж вектору                               r1 = (–0,5568; 0,8352)  по другій граничній прямій (мал. 2). Координати наступної точки х2 дорівнюють

,

а градієнт

.

Знову визначаємо проміжок допустимих значень параметра , при яких точка х2 буде належати допустимій області.

До системи обмежень, які повинна задовольняти точка х2, не увійде друге обмеження, оскільки ця точка лежить на граничній прямій, визначеній цим обмеженням. Розв’язуючи дану систему, знаходимо проміжок

.

З використанням необхідної умови екстремуму

отримуємо . Але значення  не належить проміжку , тому приймаємо . Нова точка х2 = (1,36-0,557х1.01; 0,95+0,835х1,01)=(0,8; 1,8) лежить на перетині двох граничних прямих, які відповідають першій і другій нерівностям системи обмежень. У цій точці функція набуває значення

.

Визначимо напрямок переміщення з точки х2 – вектор r2 = (r21; r22):

максимізувати

за обмежень

;

.

Система рівнянь задачі має розв’язок r2 = (0; 0). Підставляючи одержаний розв’язок у функцію T, дістаємо, що максимум T = 0, а це означає те, що х2 є точкою максимуму цільової функції в допустимій області, тобто х2 = х* і max f (х*) = 12,68. Як видно з мал. 2, лінія рівня f(х)дотикається до границі допустимої області в точці х2.

Мал. 2

  1.  Порядок роботи:

Номер завдання відповідає порядковому номеру студента в деканатському журналі старости.

  1.   Розв’язати аналітично задану задачу нелінійного програмування, супроводжуючи розв’язок графічною ілюстрацією.
  2.   Побудувати блок-схему алгоритму рішення задачі.
  3.  Реалізувати алгоритм на одній з мов програмування та відшукати оптимальний розв’язок задачі.

Індивідуальне завдання:

Варіант 20

 


Розвязування задачі аналітично

Блок схема алгоритму:

Лістинг програми на С#:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace Gradient

{

   public partial class Form1 : Form

   {

       public Form1()

       {

           InitializeComponent();

       }

       private void button1_Click(object sender, EventArgs e)

       {

           gradient();

       }

       

       double[] x1= new double[1000];

       double[] x2 = new double[1000];

       double err = 0.0001;

       double ak = 0.05;

       double func(double x1, double x2)

       {

        return 4*x1*x1 + x2*x2 - 4*x1 + 2*x2;

       }

       double funcdx1(double x1, double x2)

       {

        return 8*x1 - 4;

       }

       double funcdx2(double x1 ,double x2)  

       {

        return 2*x2 + 2;

       }

       void gradient()

       {

        double xpr1 = 0, xpr2 = 0, funpro = 0;

        int i = 0;

           double xnt1 = double.Parse(textBox1.Text);

           double xnt2 = double.Parse(textBox2.Text);

           richTextBox1.Text = "№ " + "\t X1  " + "\t   X2 " + "\t   F( X1; X2)" + "\n";

           do

        {

         i++;

         xnt1 = xpr1-ak*funcdx1(xpr1, xpr2);

         xnt2 = xpr2-ak*funcdx2(xpr1, xpr2);

         funpro = funcdx1(xnt1, xnt2)+funcdx2(xnt1, xnt2);

         xpr1 = xnt1;

         xpr2 = xnt2;

               richTextBox1.Text += i.ToString("") +

                  "      " + xnt1.ToString("0.000000") + "      " + xnt2.ToString("0.000000")

                  + "      " + func(xnt1, xnt2).ToString("0.000000") + "\n";

               

        } while( Math.Abs(funpro) > err);

           label6.Text = "Minimum in:  ( " + xnt1.ToString("0.00") + " ; " + xnt2.ToString("0.00") + " )"+ "\n      F(x1,x2)=   " + func(xnt1, xnt2).ToString("0.00");

       }

       private void вихідToolStripMenuItem_Click(object sender, EventArgs e)

       {

           this.Close();

       }

       private void проПрограмуToolStripMenuItem_Click(object sender, EventArgs e)

       {

           AboutBox1 a = new AboutBox1();

           a.Show();

       }

   }

}

Форма Form1.cs

Форма AboutBox1.cs

Реалізація:


СПИСОК ЛІТЕРАТУРИ

1. Барінський А.Ф. і ін. Математичне програмування та дослідження операцій. – Л.: Інтелект- Захід, 2008. – 588с.: іл.

2. Барінський А.Ф. і ін. Математичне програмування. – Л.: Інтелект-Захід, 2004. – 448с.: іл.

3. Зайченко Ю.П. Дослідження операцій. – К.: ДМК Пресс, 2006. – 576с.: іл.

4. Долженков В.А., Колесников Ю.В. Microsoft Excel 2000. – СПб.: БХВ-Петербург, 2001. – 1088с.

5. Кудрявцев Е.М. Mathcad 2000 Pro. – М.: ДМК Пресс, 2001. – 576с.

6. Таха Хэмди А. Введение в исследование операций, 6-е издание: Пер. с англ. – М.: Издательский дом «Вильямс», 2001. – 912с.: ил.

7. Наконечний С. І., Савіна С. С. Математичне програмування: Навч. посіб. — К.: КНЕУ, 2003. — 452 с.

Висновок: на цій лабораторній роботі я ознайомився з градієнтним методом числової оптимізації, набув навиків розв’язку та аналізу задач нелінійного програмування градієнтним методом та розробив конкурентоспроможну програму оптимізації градієнтним способом.


 

А также другие работы, которые могут Вас заинтересовать

40948. Создание покадровой анимации в Flash 793.5 KB
  Создание покадровой анимации Во Flsh предусмотрено три различных механизма анимирования объектов: покадровая классическая анимация когда автор сам создает или импортирует из других приложений каждый кадр будущего мультика и устанавливает последовательность их просмотра; автоматическое анимирование так называемая tweenedанимация при использовании которой автор создает только первый и последний кадры мультипликации а Flsh автоматически генерирует все промежуточные кадры; различают два вида tweenedанимации: анимация...
40949. Создание анимации вращения 328 KB
  Более того эта анимация работает корректно только если в начальном и заключительном ее кадрах расположен один и тот же флэшсимвол В технологии Flsh используются самостоятельные объекты называемые флэшсимволами Symbols. поэтому анимация движения способна постепенно изменять все эти свойства от первого кадра к заключительному. В случае когда надо совмещать вращение с перемещением в панели Свойств в начальном ключевом кадре анимации задается вращение. Нарисуйте в первом кадре стрелку используя инструмент Кисть B.
40950. Создание анимации. Движение по заданной траектории 566 KB
  Создание анимации Движение по заданной траектории Это занятие посвящено движению по траектории созданию мувиклипов. Движение по заданной траектории Flsh позволяет задать движение объекта вдоль заданной траектории. Добавьте слой траектории.
40951. Работа со звуком в Flash 939 KB
  Работа со звуком во Flsh Введение Где взять звуки Добавление звука во Flsh Импорт звуков Различные виды синхронизации Применение компрессии к выбранным звукам Применение компрессии ко всем звукам Общие рекомендации по экспорту звука
40952. Создание Flash презентации 807.5 KB
  Создание Flshпрезентации Основные принципы создания презентации Способы создания презентации во Flsh Создание презентации Основные принципы создания презентации Способы создания презентации во Flsh Создание презентации Введение Презентация грамотно разработанная с помощью Flsh будет выгодно выделяться среди шаблонных продуктов рожденных в инкубаторе Microsoft Power Point. Основные принципы создания презентации Очень важно чтобы ваша презентация имела цельный законченный вид. После создания структуры...
40953. Программирование в Flash 785.5 KB
  Программирование во Flsh План Введение Знакомство с панелью Действия ctions Работа с действиями объектов Использование действий Возможности управления сценами с помощью сценариев ctionScript События мыши
40954. Объявление и инициализация переменной типа bool. Вывод данных на консоль 97 KB
  Консолью называется окно операционной системы, в котором пользователи взаимодействуют с операционной системой. Приложение может считывать пользовательский ввод из стандартного входного потока, записывать обычные данные в стандартный выходной поток и записывать данные об ошибках в стандартный поток сообщений об ошибках.
40955. Оператор выбора switch 358 KB
  Пример using System; nmespce Consoleppliction5 { clss Progrm { sttic void Minstring[] rgs { int cseSwitch = 5; switch cseSwitch { cse 1: Console. Если за меткой cse нет списка операторов то операторы brek goto cse или goto defult необязательны В примере управление передается списку операторов следующему за меткой cse 2 using System; nmespce Consoleppliction5 {...
40956. Политические идеи современности 75 KB
  В наши дни наблюдается усиление прикладного характера современных политических идей их использования для решения конкретных социальных и экономических проблем. Для него характерно пристальное внимание к вопросам социальных гарантий политической демократии. С одной стороны социальная драма модели государственного социализма догматического марксизма и в то же время успех социалдемократии в решении социальных программ превращение в авторитетную политическую силу современности. Политическая дифференциация России выдвигает проблему...