47006

ТЕОРИЯ ПОДОБИЯ В ПРИМЕНЕНИИ К ДИФФЕРЕНЦИАЛЬНОМУ УРАВНЕНИЮ ТЕПЛОПРОВОДНОСТИ

Доклад

Физика

Считаем также что начальная температура тела одинакова и не зависит от координат т.4 где α коэффициент теплоотдачи от тела к омывающей среде Tw температура стенки тела . С другой стороны плотность теплового потока у стенки тела равна: ∂T ∂ϑ qw = −λ = −λ 4.5 ∂n ∂n w w где λ коэффициент теплопроводности тела ∂T производная температуры в теле по нормали к поверхности.

Русский

2013-11-27

43.9 KB

5 чел.

4.3. ТЕОРИЯ ПОДОБИЯ В ПРИМЕНЕНИИ К ДИФФЕРЕНЦИАЛЬНОМУ УРАВНЕНИЮ ТЕПЛОПРОВОДНОСТИ

Предположим, что температура среды T f , омывающей рассматриваемое

тело, величина постоянная. Считаем также, что начальная температура тела одинакова и не зависит от координат, т.е. T ( x, y, z,0) = T0 = const

Введем новую переменную

ϑ = T T f  .

(4.2)

Тогда дифференциальное

уравнение теплопроводности

запишется

в виде

ϑ

= a2ϑ

(4.3)

τ

Начальные условия: при τ =0 ϑ =ϑ0 ( x, y, z) , в нашем случае: ϑ0  = const

Используем граничные условия 3-го рода:

qw  =α(Tw Tf ) = αϑw ,

(4.4)

где α  коэффициент теплоотдачи от тела к омывающей среде, Tw - температура стенки тела .

С другой стороны, плотность теплового потока у стенки тела равна:

T

ϑ

qw  = −λ

= −λ

,

(4.5)

n

n

w

w

где λ -  коэффициент теплопроводности

тела,

T

-  производная

температуры в теле по нормали к поверхности.

n  w

Из (4.4) и (4.5) следует:

ϑw  = −

λ

ϑ

,

(4.6)

α

n  w

Таким образом, решение уравнения (4.3) зависит от:

  1.  формы тела; 

  1.  характерного размера тела L; 

  1.  теплофизических свойств тела - a = λ /(cρ) ; 

  1.  начального условия ϑ0 ; 

  1.  условий теплообмена с окружающей средой, т.е. коэффициента теплоотдачи α 

Для тел одинаковой формы имеем:

ϑ =ϑ( x, y, z,τ, L, a,ϑ0 ,α) ,

(4.7)

Совершенно очевидно, что получить универсальную форму решения для функции, зависящей от столь большего количества параметров, невозможно.

Попробуем, используя теорию подобия, уменьшить количество факторов, влияющих на решение.


Используем в качестве масштаба температур ϑ0 , а в качестве масштаба длины - характерный размер тела L. Тогда:

Θ =ϑ /ϑ0 - безразмерная избыточная температура,

x = x / L, y = y / L, z = z / L - безразмерные линейные координаты.

При использовании новых переменных уравнение получаем:

ϑ

= ϑ 0

∂Θ

2ϑ =

ϑ0

,

2

Θ,  где

2

-  оператор Лапласа,

τ

τ

L2

записанный в системе безразмерных координат ( x, y,z ). Тогда уравнение (4.3) примет вид:

Θτ = la2 2Θ

или

∂Θ

=

2

Θ

2

(aτ / L )

Условия однозначности уравнения (4.8) имеют вид:

при τ = 0, Θ =1 ;

на границе тела из (4.6) получаем:

Θn  w  = −αλL Θw ,

В уравнение (4.8) и в граничное условие (4.9) безрпазмерные комплексы - определяющие критерии подобия

 

(4.8)

(4.9)

входят некие aτ / L2 и αL / λ .

Безразмерный комплекс aτ / L2

называется критерием тепловой

гомохронности Фурье Fo = aτ / L2    (см.

гл.  3),  который характеризует

соотношение между временем протекания процесса и временем распространения температурной волны. Безразмерный комплекс αL / λ обозначается через Bi = αL / λ и так же, как и Fo, является критерием подобия процессов нестационарной теплопроводности, в частности, подобия граничных условий 3-го рода. По своему физическому смыслу он характеризует отношение термического сопротивления теплопроводности стенки L / λ к термическому сопротивлению теплоотдачи на границе между телом и окружающей средой

1 / α .

Критерии Fo и Bi называются определяющими критериями, состоящими из независимых переменных и условий однозначности, а функция Θ - определяемой.

В новых переменных уравнение Фурье Кирхгофа имеет вид

∂Θ

=

2

Θ,

(4.10)

Fo

А граничные условия 3-го рода


∂Θ

= −BiΘw ,

(4.11)

n  w

А решением уравнения является функция

Θ = Θ(

,

,

, Fo, Bi) ,

(4.12)

x

y

z

Формула (4.12) означает, что безразмерные температуры двух тел одинаковой формы, равномерно нагретых в начальный момент времени τ = 0, в сходственных точках пространства и времени будут одинаковы, если одинаковы критерии Bi. Например, на поверхности плоской пластины толщиной 2δ (характерный размер L = δ) получаем:

Θw = Θ(Fo, Bi) ,

(4.13)

Зависимость (4.12) можно получить аналитически и с помощью численных методов: они представляются в виде таблиц или номограмм. На рис. 4.1 ... 4.3 приведены примеры номограмм для расчета процессов нагрева и охлаждения простейших тел в среде с постоянной температурой.

.

Пример I. Стальная плита толщиной 2δ = 0.2 м с начальной темпера-турой T0 = 955K опущена в масляную ванну (температура масла принимается

постоянной

и равной Tf  = 355K ).   Считая

коэффициент

теплоотдачи

постоянным

[α =180Вт/( м2 K ) ],  определить

температуру

в плоскости

симметрии и на поверхности плиты через 1 час 23 мин.

Решение. Пренебрегая в первом приближении зависимостью теплофизических свойств стали от температуры, примем в рассматриваемом

интервале

температур λ20Вт/( м K )  и a = 4 106 м2 / c .  Тогда значения

определяющих критериев Fo и Bi будут

Fo =

aτ

=

4 106 83 60

= 2 ,

δ

2

2

0.1

Bi = αδ

=

180 0.1

= 0.9

λ

20

Пользуясь номограммами,  приведенными на рис. 4.1а, 4.1б,

находим, что безразмерная температура в плоскости симметрии равна:

ΘЦ

=

TЦ Tf

= 0.3

,

T0

Tf

а на поверхности пластины:

Θ

=

TW  Tf

= 0.2

,

W

T0

Tf

Откуда:


TЦ = 0.3 (T0 Tf ) +T f  = 0.3 (955  355) + 355 = 535K ,

TW  = 0.2 (T0 T f ) +T f  = 0.2 (955  355) + 355 = 475K


 

А также другие работы, которые могут Вас заинтересовать

526. Параллельное хеширование на GPU в реальном времени 84 KB
  Эффективный алгоритм параллелизма данных для построения больших хеш-таблиц на миллионы элементов в режиме реального времени. Гибридная хеш-таблица основана на современных идеях из теории хеширования. Компромисс между сроками строительства, временем доступа и рационального использования пространства.
527. Тест стиральных Порошков-концентратов 83 KB
  Активную основу стирального порошка составляют поверхностноактивные вещества (сокращенно ПАВ), их доля – 1525%, самый простой пример ПАВ – мыло. Задача ПАВ состоит в смачивании загрязненной ткани моющим раствором и ослаблении связи загрязнения и ткани.
528. Деятельность отдела по подбору персонала ОАО Альфа-Банк 94 KB
  Во время прохождения практики у меня была возможность непосредственно ознакомиться со структурой реально работающей организации, специализацией отдела, где я работал, а также проявить себя как молодого специалиста. В данном отчете представлены различные аспекты моей практики и мои впечатления о ней.
529. Пунктуаційні норми в писемному мовленні фахівців технічної сфери 96.5 KB
  Система правил письмового оформлення структури пропозиції. Утворення логіко-граматичного каркасу письмового висловлювання і точне вираження складних думок, які можуть бути виражені засобами усного мовлення.
530. Холодная штамповка. Формообразование заготовок из порошковых материалов 68.21 KB
  Формообразующие операции листовой штамповки. Схемы листовой штамповки при помощи эластичной среды и жидкости. Формообразование заготовок из порошковых материалов. Высокоскоростные методы штамповки.
531. Облік товарів у виробництві 78.5 KB
  Поняття, класифікація та оцінка товарів. Бухгалтерське відображення, операцій, пов'язаних з рухом товарів. Порядок списання товарів при їх вибутті. Торговельні, збутові підприємства на рахунку 28.
532. Изучение многовалютного алгоритма банкира 120 KB
  Изучение тупиковых ситуаций в операционных системах и алгоритма банкира, как средства обхода тупиков. Пример с участием пяти процессов и трех видов ресурсов, требуемых для завершения данных процессов.
533. Система Дело, клиент для мобильного телефона 124 KB
  Описание функций, преимуществ и недостатков. Пример встроенного инструментария. Руководитель может через удобный web-интерфейс удаленно контролировать работу исполнителей, а так же обеспечить формирование единого информационного пространства в рамках территориально распределенной организации.
534. Получение дешевой электроэнергии 92 KB
  Мы рассмотрели, каким способом можно создать такой аппарат; узнали сколько нужно потратить на него времени, денег, кто поможет собрать такой аппарат. Выбрали подходящий способ создания такого аппарата. Собрали этот аппарат. Проанализировали его эффективность в работе.