47006

ТЕОРИЯ ПОДОБИЯ В ПРИМЕНЕНИИ К ДИФФЕРЕНЦИАЛЬНОМУ УРАВНЕНИЮ ТЕПЛОПРОВОДНОСТИ

Доклад

Физика

Считаем также что начальная температура тела одинакова и не зависит от координат т.4 где α коэффициент теплоотдачи от тела к омывающей среде Tw температура стенки тела . С другой стороны плотность теплового потока у стенки тела равна: ∂T ∂ϑ qw = −λ = −λ 4.5 ∂n ∂n w w где λ коэффициент теплопроводности тела ∂T производная температуры в теле по нормали к поверхности.

Русский

2013-11-27

43.9 KB

4 чел.

4.3. ТЕОРИЯ ПОДОБИЯ В ПРИМЕНЕНИИ К ДИФФЕРЕНЦИАЛЬНОМУ УРАВНЕНИЮ ТЕПЛОПРОВОДНОСТИ

Предположим, что температура среды T f , омывающей рассматриваемое

тело, величина постоянная. Считаем также, что начальная температура тела одинакова и не зависит от координат, т.е. T ( x, y, z,0) = T0 = const

Введем новую переменную

ϑ = T T f  .

(4.2)

Тогда дифференциальное

уравнение теплопроводности

запишется

в виде

ϑ

= a2ϑ

(4.3)

τ

Начальные условия: при τ =0 ϑ =ϑ0 ( x, y, z) , в нашем случае: ϑ0  = const

Используем граничные условия 3-го рода:

qw  =α(Tw Tf ) = αϑw ,

(4.4)

где α  коэффициент теплоотдачи от тела к омывающей среде, Tw - температура стенки тела .

С другой стороны, плотность теплового потока у стенки тела равна:

T

ϑ

qw  = −λ

= −λ

,

(4.5)

n

n

w

w

где λ -  коэффициент теплопроводности

тела,

T

-  производная

температуры в теле по нормали к поверхности.

n  w

Из (4.4) и (4.5) следует:

ϑw  = −

λ

ϑ

,

(4.6)

α

n  w

Таким образом, решение уравнения (4.3) зависит от:

  1.  формы тела; 

  1.  характерного размера тела L; 

  1.  теплофизических свойств тела - a = λ /(cρ) ; 

  1.  начального условия ϑ0 ; 

  1.  условий теплообмена с окружающей средой, т.е. коэффициента теплоотдачи α 

Для тел одинаковой формы имеем:

ϑ =ϑ( x, y, z,τ, L, a,ϑ0 ,α) ,

(4.7)

Совершенно очевидно, что получить универсальную форму решения для функции, зависящей от столь большего количества параметров, невозможно.

Попробуем, используя теорию подобия, уменьшить количество факторов, влияющих на решение.


Используем в качестве масштаба температур ϑ0 , а в качестве масштаба длины - характерный размер тела L. Тогда:

Θ =ϑ /ϑ0 - безразмерная избыточная температура,

x = x / L, y = y / L, z = z / L - безразмерные линейные координаты.

При использовании новых переменных уравнение получаем:

ϑ

= ϑ 0

∂Θ

2ϑ =

ϑ0

,

2

Θ,  где

2

-  оператор Лапласа,

τ

τ

L2

записанный в системе безразмерных координат ( x, y,z ). Тогда уравнение (4.3) примет вид:

Θτ = la2 2Θ

или

∂Θ

=

2

Θ

2

(aτ / L )

Условия однозначности уравнения (4.8) имеют вид:

при τ = 0, Θ =1 ;

на границе тела из (4.6) получаем:

Θn  w  = −αλL Θw ,

В уравнение (4.8) и в граничное условие (4.9) безрпазмерные комплексы - определяющие критерии подобия

 

(4.8)

(4.9)

входят некие aτ / L2 и αL / λ .

Безразмерный комплекс aτ / L2

называется критерием тепловой

гомохронности Фурье Fo = aτ / L2    (см.

гл.  3),  который характеризует

соотношение между временем протекания процесса и временем распространения температурной волны. Безразмерный комплекс αL / λ обозначается через Bi = αL / λ и так же, как и Fo, является критерием подобия процессов нестационарной теплопроводности, в частности, подобия граничных условий 3-го рода. По своему физическому смыслу он характеризует отношение термического сопротивления теплопроводности стенки L / λ к термическому сопротивлению теплоотдачи на границе между телом и окружающей средой

1 / α .

Критерии Fo и Bi называются определяющими критериями, состоящими из независимых переменных и условий однозначности, а функция Θ - определяемой.

В новых переменных уравнение Фурье Кирхгофа имеет вид

∂Θ

=

2

Θ,

(4.10)

Fo

А граничные условия 3-го рода


∂Θ

= −BiΘw ,

(4.11)

n  w

А решением уравнения является функция

Θ = Θ(

,

,

, Fo, Bi) ,

(4.12)

x

y

z

Формула (4.12) означает, что безразмерные температуры двух тел одинаковой формы, равномерно нагретых в начальный момент времени τ = 0, в сходственных точках пространства и времени будут одинаковы, если одинаковы критерии Bi. Например, на поверхности плоской пластины толщиной 2δ (характерный размер L = δ) получаем:

Θw = Θ(Fo, Bi) ,

(4.13)

Зависимость (4.12) можно получить аналитически и с помощью численных методов: они представляются в виде таблиц или номограмм. На рис. 4.1 ... 4.3 приведены примеры номограмм для расчета процессов нагрева и охлаждения простейших тел в среде с постоянной температурой.

.

Пример I. Стальная плита толщиной 2δ = 0.2 м с начальной темпера-турой T0 = 955K опущена в масляную ванну (температура масла принимается

постоянной

и равной Tf  = 355K ).   Считая

коэффициент

теплоотдачи

постоянным

[α =180Вт/( м2 K ) ],  определить

температуру

в плоскости

симметрии и на поверхности плиты через 1 час 23 мин.

Решение. Пренебрегая в первом приближении зависимостью теплофизических свойств стали от температуры, примем в рассматриваемом

интервале

температур λ20Вт/( м K )  и a = 4 106 м2 / c .  Тогда значения

определяющих критериев Fo и Bi будут

Fo =

aτ

=

4 106 83 60

= 2 ,

δ

2

2

0.1

Bi = αδ

=

180 0.1

= 0.9

λ

20

Пользуясь номограммами,  приведенными на рис. 4.1а, 4.1б,

находим, что безразмерная температура в плоскости симметрии равна:

ΘЦ

=

TЦ Tf

= 0.3

,

T0

Tf

а на поверхности пластины:

Θ

=

TW  Tf

= 0.2

,

W

T0

Tf

Откуда:


TЦ = 0.3 (T0 Tf ) +T f  = 0.3 (955  355) + 355 = 535K ,

TW  = 0.2 (T0 T f ) +T f  = 0.2 (955  355) + 355 = 475K


 

А также другие работы, которые могут Вас заинтересовать

3114. Организация и вооружение мсб на БТР (БМП) 233.28 KB
  Организация и вооружение мсб на БТР (БМП). ТТХ АК-74 Мотострелковый батальон состоит из: (имеет 517 человек л/с) управление батальона штаба ·взвода связи (ВС) 3-х мотострелковых рот (МСР) минометной батареи (Мин.Бат.) противотанкового взвода (П...
3115. Разработка и исследование двухконтурной структуры подчиненного регулирования скорости электропривода постоянного тока 386 KB
  Очень трудно представить себе современную жизнь человека без систем автоматического управления (САУ). Методы автоматического управления широко используются в производстве и научных исследованиях. Одной из главных задач автоматики является...
3116. ИССЛЕДОВАНИЕ ТЕПЛОЗАЩИТНЫХ КАЧЕСТВ МНОГОСЛОЙНОЙ СТЕНОВОЙ ОГРАЖДАЮЩЕЙ КОНСТРУКЦИИ 111 KB
  Лабораторная работа №1 ИССЛЕДОВАНИЕ ТЕПЛОЗАЩИТНЫХ КАЧЕСТВ МНОГОСЛОЙНОЙ СТЕНОВОЙ ОГРАЖДАЮЩЕЙ КОНСТРУКЦИИ Цель работы: знакомство с экспериментальными методами исследования теплозащитных качеств ограждения и принципам анализа основных параметров, хара...
3117. ИССЛЕДОВАНИЕ ТЕПЛОЗАЩИТНЫХ КАЧЕСТВ ОКОННЫХ ОГРАЖДЕНИЙ 99.5 KB
  ИССЛЕДОВАНИЕ ТЕПЛОЗАЩИТНЫХ КАЧЕСТВ ОКОННЫХ ОГРАЖДЕНИЙ Цель работы: знакомство с экспериментальными методами исследования теплозащитных качеств оконных заполнений. Приборы и оборудование: фрагмент светопрозрачного оконного ограждения, комплект смонти...
3118. Алгоритм диагностики трансмиссии автомобиля Daewoo Matiz 243.29 KB
  Daewoo Matiz — микролитражный городской автомобиль класса «А». Разработан и выпускается южнокорейским подразделением General Motors (Daewoo), а также другими автозаводами по лицензии.
3119. Управление затратами транспортного цеха ОАО Омскавтотранс 1.03 MB
  На рынке автотранспортных услуг в новых рыночных условиях управление затратным механизмом перевозок, а значит и повышение их эффективности, является жизненно важной задачей любого автотранспортного предприятия. Одна из наиболее актуальных п...
3120. Множества и операции над ними 133 KB
  Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива...
3121. Написание программы реализующей параллельную работу нескольких процессов 121.5 KB
  Необходимо написать программу, реализующую параллельную работу нескольких процессов. Каждый процесс может состоять из одного или нескольких потоков. Любой из потоков, работающих в составе этих процессов, может быть приостановлен и вновь запущен неко...
3122. Реализация параллельной работы нескольких процессов программным методом 258 KB
  При написании программы выяснилось, что имеющиеся в Borland Pascal функции вывода (Write[Ln]) не подходят, т. к. в том случае, когда несколько процессов выводят информацию на экран может случиться