47183

Явление электромагнитной индукции. Закон Фарадея-Ленца. Генератор переменного тока.Токи Фуко

Доклад

Физика

Генератор переменного тока.Токи Фуко Явление электромагнитной индукции состоит в том что при изменении магнитного потока через поверхность ограниченную проводящим контуром в последнем возбуждается электродвижущая сила εͥͥͥͥͥͥͥ. Согласно закону Ленца индукционный ток всегда имеет такое направление что его магнитное поле противодействует изменению внешнего магнитного потока. Величина εͥͥͥͥͥͥͥ определяется законом ФарадеяЛенца и не зависит от способа которым осуществляется изменение потока.

Русский

2013-11-28

76 KB

8 чел.

Вопрос №8.

Явление электромагнитной индукции. Закон Фарадея-Ленца. Генератор переменного тока.Токи Фуко

Явление электромагнитной индукции состоит в том, что при изменении магнитного потока через поверхность ограниченную проводящим контуром, в последнем возбуждается электродвижущая сила εͥͥͥͥͥͥͥ.Если контур замкнутый, то под действием этой ЭДС в нем возникает электрический ток, называемый индукционным. Согласно закону Ленца, индукционный ток всегда имеет такое направление, что его магнитное поле противодействует изменению внешнего магнитного потока. Магнитный поток

(где В-магнитная индукция; S- площадь контура, α- угол между вектором Β и нормалью поверхностью контура), пронизывающий поверхность, ограниченную контуром, может изменяться по ряду причин: за счет изменения геометрии контура и его расположения в магнитном поле, вследствие зависимости магнитной индукции от времени, а так же благодаря совместному действию этих факторов. Величина εͥͥͥͥͥͥͥ определяется законом Фарадея-Ленца и не зависит от способа, которым осуществляется изменение потока. Закон Фарадея-Ленца гласит: электродвижущая сила индукции εͥͥͥͥͥͥͥ, возникающая в контуре, численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром: 

Согласно закону Ленца, величину εͥͥͥͥͥͥͥ ,считают положительной, если магнитной момент

Соответствующего ей индукционного тока образует острый угол с линиями магнитной индукции поля, которое возбуждает индукционный ток I. И εͥͥͥͥͥͥͥ  считают отрицательной, если угол тупой.

Генератор переменного тока (альтернатор) является электромеханическим устройством, которое преобразует механическую энергию в электрическую энергию переменного тока. Большинство генераторов переменного тока используют вращающееся магнитное поле.

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и т. п., а также в некоторых конструкциях поездов, для торможения.

Вопрос №9

Явление самоиндукции. Индуктивность. Индуктивность длинного соленоида и тороида.

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС — это явление и называется самоиндукцией. Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :

.

Коэффициент пропорциональности  называется коэффициентом самоиндукции или индуктивностью контура (катушки). Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.

В формуле

 — магнитный поток,  — ток в контуре,  — индуктивность..Нередко говорят об индуктивности прямого длинного провода. В этом случае и других (особенно - в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля. Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока:

.Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током:

.Практически участки цепи со значительной индуктивностью выполняют в виде катушек индуктивности. Элементами малой индуктивности (применяемыми для больших рабочих частот) могут быть одиночные (в том числе и неполные) витки или даже прямые проводники; при высоких рабочих частотах необходимо учитывать индуктивность всех проводников.

Для имитации индуктивности, т.е. ЭДС на элементе, пропорциональной и противоположной по знаку скорости изменения тока через этот элемент, в электронике используются и устройства, не основанные на электромагнитной индукции ( такому элементу можно приписать определенную эффективную индуктивность, используемую в расчетах полностью (хотя вообще говоря с определенными ограничивающими условиями) аналогично тому, как используется обычная индуктивно. Соленоид — длинная, тонкая катушка, то есть катушка, длина которой намного больше, чем её диаметр (также в дальнейших выкладках здесь подразумевается, что толщина обмотки намного меньше, чем диаметр катушки). При этих условиях и без использования магнитного материала плотность магнитного потока  внутри катушки является фактически постоянной и (приближенно) равна

где   магнитная постоянная,  − число витков,  − ток и  − длина катушки. Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление через катушку равно плотности потока , умноженному на площадь поперечного сечения  и число витков 

Для тороидальной катушки, намотанной на сердечнике из материала с большой магнитной проницаемостью, можно приближенно пользоваться формулой для бесконечного прямого соленоида

где  - оценка длины соленоида ( - большой радиус тора).


 

А также другие работы, которые могут Вас заинтересовать

11637. ОТРАВЛЯЮЩИЕ И АОХВ УДУШАЮЩЕГО ДЕЙСТВИЯ. КЛИННИКА, ДИАГНОСТИКА, ЛЕЧЕНИЕ 114.5 KB
  Пульмонотоксичностью обладают очень многие химические вещества. Имея большую площадь поверхности (около 70 м2), лёгкие постоянно подвергаются воздействию ксенобиотиков, содержащихся во вдыхаемом воздухе. В подавляющем большинстве случаев, когда концентрации веществ малы, такие воздействия никак не проявляют себя
11638. Определение фокусного расстояния и оптической силы линзы 1.29 MB
  Цель работы: Определение фокусного расстояния и оптической силы линзы. Схема установки и расчётная формула: Приборы и материалы: nл показатель преломления среды; nср показатель преломления материала линзы; R1 R2 радиусы кривизны соответственно I II п
11639. Определение длины световой волны методом колец Ньютона 517 KB
  Целью работы является знакомство с интерференцией волн и определение длины световой волны методом колец Ньютона. Схема установки: Приборы и принадлежности: 1 Линза и стеклянная плоскопараллельная пластинка находящаяся в общей оправе 2 Транс...
11640. Исследовать закономерность соударений тел с помощью компьютерного процесса забивания сваи в грунт 78 KB
  Цель работы: исследовать закономерность соударений тел с помощью компьютерного процесса забивания сваи в грунт. Мы исследовали закономерности соударения тел с помощью компьютерного моделирования процесса забивания сваи в грунт.
11641. Измерение емкости конденсатора. Определение неизвестных сопротивлений проводников (катушек) при помощи мостика Уитстона 93.5 KB
  Измерение емкости конденсатора Цель работы: Определение неизвестных сопротивлений проводников катушек при помощи мостика Уитстона. Схема принципиальной установки: сопротивления Г гальванометр ...
11642. Измерение электродвижущей силы источника постоянного тока 32.5 KB
  Отчет По лабораторной работе №23 Измерение электродвижущей силы источника постоянного тока Цель работы: Измерение электродвижущей силы источника постоянного тока методом компенсации. Теоретическое введение. Электрическим током называется порядо...
11643. Определение кривой намагничивания железа 63.5 KB
  Отчет По лабораторной работе №28 Определение кривой намагничивания железа Цель работы: Ознакомление с характеристиками магнитных свойств вещества и определение зависимости магнитной индукции и магнитной проницаемости ферромагнитного образца от напряжен
11644. Исследование гальванометра магнитоэлектрической системы. 37.5 KB
  Отчет По лабораторной работе №29 Исследование гальванометра магнитоэлектрической системы Цель работы: экспериментальное измерение основных характеристик гальванометра магнитоэлектрической системы. Теоретическое введение: В электрических приборах м
11645. Измерение потерь напряжения в проводах. 108 KB
  Измерение потерь напряжения в проводах Цель работы: Ознакомление с общими принципами передачи электрической энергии на большие расстояния и определение потерь напряжения в моделях электрических линий. Теоретическое введение. Передача электрической эне...