4732

Расчет стержневой конструкции на сложное сопротивление

Контрольная

Производство и промышленные технологии

Пояснительная записка представляет собой отчет о выполнении курсовой работы. Дано подробное решение стержневой конструкции на сложное сопротивление. Приведена исходная схема конструкции, построены эпюры поперечных и нормальных сил, а также...

Русский

2012-11-25

135 KB

14 чел.

Пояснительная записка представляет собой отчет о выполнении курсовой работы. Дано подробное решение стержневой конструкции на сложное сопротивление. Приведена исходная схема конструкции,  построены эпюры поперечных и нормальных сил, а также изгибающих и крутящих моментов. В конце работы приведен расчет  выбора наиболее экономичного профиля стержня. Дан список используемой литературы.

Оглавление

Исходные данные 5

I. Построение эпюр поперечных и нормальных сил, изгибающих и крутящих моментов. 5

II. Определение размеров поперечных сечений и вычисление напряжений. 8

III. Выбор наиболее экономичного профиля стержня. 12

Список литературы 13


Исходные данные:
 

а=2 м, b=3 м, c=2 м, d=3 м; P1=2 кН , Р2=3 кН, Р3=4 кН, q1=3 кН/м, q2=2 кН/м, М1=5 кН∙м, М2=4 кН∙м  h/b=1

Рис. 1. Расчетная схема пространственного бруса

  1.  Построение эпюр поперечных и нормальных сил, изгибающих и крутящих моментов.

1 стержень. Рассмотрим сечение x1.

Поперечные силы:

Qy=q2∙Х1, Qz =0.

при Y1=0 Qу=0 кН

при Y1=d=3 м Qу=2∙3=6 кН

Изгибающие моменты:

Крутящий момент отсутствует Мк=0

Относительно оси Y1 брус изгибается моментом М2 постоянным по величине вдоль всей длины бруса:

My = -М2=-5 кН∙м

Относительно оси Z1 брус изгибается распределенной нагрузкой q2:

Мz=-q2∙Х12/2

Момент зависит от координаты Х1 во второй степени, следовательно он изменяется по параболе. Выражение для момента справедливо по всей длине бруса, т.е: 0≤Х1≤d

при Х1=0 Mz = 0

при Х1=d=3 м  Mz = -2∙32/2=-9 кН∙м

При построении эпюр ордината момента Му откладывается в отрицательном направлении оси Z1, а также ордината момента Мz откладывается в отрицательном направлении оси Х1

Нормальная сила Nx = -Р1=-2 кН

2 стержень. Рассмотрим сечение Х2.

Поперечные силы:

Qz = 0, Qy = P1P2 = 2 - 3 = -1 кН,

Изгибающие моменты:

Относительно оси Z1 брус изгибается под воздействием сил Р1, Р2  (зависящих от координаты Х2) и распределенной нагрузкой q2, не зависящей от Х2. Момент зависит от координаты Х2 в первой степени, следовательно он изменяется по линейному закону. Выражение для момента справедливо по всей длине бруса, т.е: 0≤Х2≤b

Mz =(Р212-q2∙d2/2

При Х2=0 Мz=-q2∙d2/2=-2∙32/2=-9 кН∙м

При Х2=b=3 м  Мz=(3-2)∙3-2∙32/2=-6 кН∙м

Относительно оси Y2.брус изгибается моментом М1, не зависящим от координаты Х2. Выражение для момента справедливо по всей длине бруса, т.е: 0≤Х2≤b

Му1=5 кН∙м

Нормальная сила Nx = q2∙d=2∙3=6 кН

Под действием момента М2 брус испытывает кручение

Крутящий момент Mкр.= -М2=-5 кН∙м

Рассмотрим сечение Х2'

Поперечные силы:

Qz = 0, Qy = P1P2 = 2 - 3 = -1 кН,

Изгибающие моменты:

Относительно оси Z1 брус изгибается под воздействием сил Р1, Р2  (зависящих от координаты Х2’) и распределенной нагрузкой q1 и q2 и силы Р1 не зависящих от Х2. Момент зависит от координаты Х2 в первой степени, следовательно он изменяется по линейному закону. Выражение для момента справедливо по всей длине бруса, т.е: b≤Х2’≤а+b

Mz =(Р212’-q2∙d2/2-q1∙с2/2+Р3∙с

При Х2=b=3 м Мz=(3-2)∙3-2∙32/2-3∙22/2+4∙3=0 кН∙м

При Х2=а+b=5 м  Мz=(3-2)∙5-2∙32/2-3∙22/2+4∙3=2кН∙м

Относительно оси Y2.брус изгибается моментом М1, не зависящим от координаты Х2. Выражение для момента справедливо по всей длине бруса, т.е: 0≤Х2≤b

Му1=5 кН∙м

Нормальная сила Nx = q2∙d-q1∙с+Р3=2∙3-3∙2+4=4 кН

Под действием момента М2 брус испытывает кручение

Крутящий момент Mкр.= -М2=-5 кН∙м

3 стержень. Рассмотрим сечение Х3.

Поперечные силы:

Qz = 0

Qy = q1∙Х3- P3,

При Х3=0 Qу=-Р3=-4 кН

При Х3=с=2 м Qу=3∙2-4=2 кН

Так как эпора Qу меняет знак найдем точку пересечения с осью Х:

q1∙Х3- P3=0 →Х33/q1=4/3=1,333 м

Изгибающие моменты:

Му=0 Mz = q1Х32/2-Р3∙Х3;

Момент зависит от координаты Х2 во второй степени, следовательно он изменяется по параболе. Причем переходит через максимум в точке перемены знака эпюрой Qу Выражение для момента справедливо по всей длине бруса, т.е: 0≤Х3≤с

при Х3=0 Mz = 0

при Х3=с=2 м Mz = 3∙22/2-4∙2=-2 кН∙м

при Х3=1,333 м Мz=3∙1,3332/2-4∙1,333=-2,66 кН∙м

Крутящий момент Мх=0

Нормальная сила Nx =0.

На рисунке 2 представлены эпюры поперечных и продольных сил, изгибающих и крутящих моментов.

Рис. 2. Эпюры сил и моментов

  1.  Определение размеров поперечных сечений и вычисление напряжений.

1 стержень: вид деформации – косой изгиб+сжатие.

Условие прочности для стержня: ;

Величиной пренебрегаем ввиду малого значения.

- для стали.

момент сопротивления сечения балки , так как .

; h = b = 17 см.

Вычислим σ в четырех точках сечения:

- условие прочности выполнено.

Рис. 3. Эпюра распределения напряжений в сечении стержня 1

2 стержень: вид деформации – косой изгиб + кручение+растяжение.

Условие прочности (по третьей теории прочности):

где ; .

Величиной пренебрегаем ввиду малого значения. Поперечное сечение второго стержня круглое, то изгиб будет плоским под действием результирующего момента

Момент сопротивления для круглого сечения

 

Наибольшие нормальные напряжения при изгибе:

Наибольшие касательные напряжения при изгибе , где F=π∙d2/4=π∙192/4=283,5 см2 

Наибольшие касательные напряжения при кручении

Проверка: кг/см2- условие прочности выполнено.

Эпюра распределения напряжений в сечении стержня

3 стержень: вид деформации – плоский изгиб.

Поперечное сечение бруса круглое,

Отсюда условие прочности примет вид:

, где

Наибольшие нормальные напряжения при изгибе:

- условие прочности выполнено.

Наибольшие касательные напряжения при изгибе (по формуле Журавского для круглого сечения):

изг. = , где F=π∙d2/4=π∙122/4=113,1 см2

Эпюра распределения напряжений в сечении стержня

  1.  Выбор наиболее экономичного профиля стержня.

Предположим, что профиль поперечного сечения стержней на всех трех участках одинаков. Необходимо выбрать профиль сечения, имеющего наименьшую металлоемкость из следующих трех: круг, прямоугольник  и трубчатое сечение . Опасным сечением стержня является точка с наибольшими значениями изгибающего и крутящего моментов, то есть в начале сечения второго стержня.

Условие прочности (по третьей теории прочности): ,

где

Условие прочности примет вид:

отсюда  

Определим площади поперечных сечений:

  1.  Для круглого сечения W = 0,1d3

;

  1.  Для квадратного сечения: b = h

F2 = bh=258 см2.

  1.  Для трубчатого сечения:

;

Таким образом, наименьшую площадь поперечного сечения имеет трубчатый профиль, следовательно, он является наиболее экономичным.

Список литературы

1. «Сопротивление материалов. Расчет стержневой конструкции на сложное сопротивление». Санкт-Петербург 1994 год.

2.    Беляев Н.М. «Сопротивление материалов».


 

А также другие работы, которые могут Вас заинтересовать

57951. НАСЕЛЕННЯ ТА ДЕРЖАВИ ПІВДЕННОЇ АМЕРИКИ 41.5 KB
  Мета: поглибити та систематизувати знання про освоєння території материка походження та формування населення материка його кількість склад та розміщення; ознайомити з політичною картою Південної Америки...
57952. Географія материків та океанів 87 KB
  За картою географічних поясів та природних зон визначте природні зони Північної Америки та вкажіть зони що займають найбільшу площу. Але окремі природні зони ми з вами ще ніколи не розглядали крім того сьогодні ви довідаєтесь чому особливе місце в розподілі природних комплексів материка належить рельєфу та впливу океану.
57953. Подорож героїв казки Г.К. Андерсена «Снігова Королева» по країні Синтаксис 221 KB
  Але перш ніж розпочати наш урок пропонуємо вам визначити капітана кожної команди експерта який буде слідкувати за роботою кожного учня в групі а також визначитися із назвою команди клас розподілений на 3 команди.
57954. Англія. Бінарний урок всесвітньої історії – англійської мови 180.5 KB
  Мета: Всесвітня історія ознайомити учнів з особливостями розвитку капіталістичних відносин в Англії особливостями Реформації в Англії та основними напрямками зовнішньої політики в 16 ст. Після уроку учні зможуть: Називати час правління Єлизавети...
57955. Антарктида 80 KB
  Мета навчальна: закріпити та узагальнити знання і вміння учнів з теми: «Антарктида»; поглибити їх знання за допомогою цікавих фактів про вивчений об’єкт, вдосконалювати вміння та навички роботи з картою, формувати нестандартне мислення...
57956. Антарктида і Антарктика. Загальні відомості. Відкриття та сучасні наукові дослідження 248 KB
  Сформувати поняття «Антарктика»; сприяти формуванню в учнів знань про географічне положення; поглибити і систематизувати знання про відкриття та сучасні дослідження Антарктиди в рамках міжнародного співробітництва; продовжити формування навичок встановлювати закономірності поширення природних умов
57957. Антарктида. Своєрідність географічного положення. Відкриття материка. Льодовиковий покрив 33 KB
  Мета уроку: дати поняття Антарктика и Антарктида льодовий материк планети; вивчити загальні відомості про материк: своєрідність ГП материка його розміри; розглянути відкриття Антарктиди та сучасні наукові дослідження материка...
57958. встралия – самый маленький материк Земли 60.5 KB
  Перед началом соревнования вам ребята надо потренироваться повторить изученный материал о природе Австралии. На протяжении трех уроков вы составляли вопросы об особенностях природы Австралии теперь у вас есть возможность задать их своим одноклассникам и выслушать ответы. Какой остров расположен к северу от Австралии Правила игры: В течение изучения материка ученики составляют вопросы по параграфам. По плану ФГП ученики сравнивают физикогеографическое положение Австралии с ФГП...
57959. ГЕОГРАФІЧНОГО ПОЛОЖЕННЯ. ІСТОРІЯ ВІДКРИТТЯ І ДОСЛІДЖЕННЯ. ГЕОЛОГІЧНА БУДОВА. ФОРМИ РЕЛЬЄФУ ТА КОРИСНІ КОПАЛИНИ АВСТРАЛІЇ 108 KB
  Мета: сформувати в учнів загальне уявлення про своєрідність та особливості природи Австралії; продовжити формування навичок учнів складати характеристику географічного положення материка за планом відшукувати закономірності розташування форм рельєфу та корисних копалин...