4732

Расчет стержневой конструкции на сложное сопротивление

Контрольная

Производство и промышленные технологии

Пояснительная записка представляет собой отчет о выполнении курсовой работы. Дано подробное решение стержневой конструкции на сложное сопротивление. Приведена исходная схема конструкции, построены эпюры поперечных и нормальных сил, а также...

Русский

2012-11-25

135 KB

14 чел.

Пояснительная записка представляет собой отчет о выполнении курсовой работы. Дано подробное решение стержневой конструкции на сложное сопротивление. Приведена исходная схема конструкции,  построены эпюры поперечных и нормальных сил, а также изгибающих и крутящих моментов. В конце работы приведен расчет  выбора наиболее экономичного профиля стержня. Дан список используемой литературы.

Оглавление

Исходные данные 5

I. Построение эпюр поперечных и нормальных сил, изгибающих и крутящих моментов. 5

II. Определение размеров поперечных сечений и вычисление напряжений. 8

III. Выбор наиболее экономичного профиля стержня. 12

Список литературы 13


Исходные данные:
 

а=2 м, b=3 м, c=2 м, d=3 м; P1=2 кН , Р2=3 кН, Р3=4 кН, q1=3 кН/м, q2=2 кН/м, М1=5 кН∙м, М2=4 кН∙м  h/b=1

Рис. 1. Расчетная схема пространственного бруса

  1.  Построение эпюр поперечных и нормальных сил, изгибающих и крутящих моментов.

1 стержень. Рассмотрим сечение x1.

Поперечные силы:

Qy=q2∙Х1, Qz =0.

при Y1=0 Qу=0 кН

при Y1=d=3 м Qу=2∙3=6 кН

Изгибающие моменты:

Крутящий момент отсутствует Мк=0

Относительно оси Y1 брус изгибается моментом М2 постоянным по величине вдоль всей длины бруса:

My = -М2=-5 кН∙м

Относительно оси Z1 брус изгибается распределенной нагрузкой q2:

Мz=-q2∙Х12/2

Момент зависит от координаты Х1 во второй степени, следовательно он изменяется по параболе. Выражение для момента справедливо по всей длине бруса, т.е: 0≤Х1≤d

при Х1=0 Mz = 0

при Х1=d=3 м  Mz = -2∙32/2=-9 кН∙м

При построении эпюр ордината момента Му откладывается в отрицательном направлении оси Z1, а также ордината момента Мz откладывается в отрицательном направлении оси Х1

Нормальная сила Nx = -Р1=-2 кН

2 стержень. Рассмотрим сечение Х2.

Поперечные силы:

Qz = 0, Qy = P1P2 = 2 - 3 = -1 кН,

Изгибающие моменты:

Относительно оси Z1 брус изгибается под воздействием сил Р1, Р2  (зависящих от координаты Х2) и распределенной нагрузкой q2, не зависящей от Х2. Момент зависит от координаты Х2 в первой степени, следовательно он изменяется по линейному закону. Выражение для момента справедливо по всей длине бруса, т.е: 0≤Х2≤b

Mz =(Р212-q2∙d2/2

При Х2=0 Мz=-q2∙d2/2=-2∙32/2=-9 кН∙м

При Х2=b=3 м  Мz=(3-2)∙3-2∙32/2=-6 кН∙м

Относительно оси Y2.брус изгибается моментом М1, не зависящим от координаты Х2. Выражение для момента справедливо по всей длине бруса, т.е: 0≤Х2≤b

Му1=5 кН∙м

Нормальная сила Nx = q2∙d=2∙3=6 кН

Под действием момента М2 брус испытывает кручение

Крутящий момент Mкр.= -М2=-5 кН∙м

Рассмотрим сечение Х2'

Поперечные силы:

Qz = 0, Qy = P1P2 = 2 - 3 = -1 кН,

Изгибающие моменты:

Относительно оси Z1 брус изгибается под воздействием сил Р1, Р2  (зависящих от координаты Х2’) и распределенной нагрузкой q1 и q2 и силы Р1 не зависящих от Х2. Момент зависит от координаты Х2 в первой степени, следовательно он изменяется по линейному закону. Выражение для момента справедливо по всей длине бруса, т.е: b≤Х2’≤а+b

Mz =(Р212’-q2∙d2/2-q1∙с2/2+Р3∙с

При Х2=b=3 м Мz=(3-2)∙3-2∙32/2-3∙22/2+4∙3=0 кН∙м

При Х2=а+b=5 м  Мz=(3-2)∙5-2∙32/2-3∙22/2+4∙3=2кН∙м

Относительно оси Y2.брус изгибается моментом М1, не зависящим от координаты Х2. Выражение для момента справедливо по всей длине бруса, т.е: 0≤Х2≤b

Му1=5 кН∙м

Нормальная сила Nx = q2∙d-q1∙с+Р3=2∙3-3∙2+4=4 кН

Под действием момента М2 брус испытывает кручение

Крутящий момент Mкр.= -М2=-5 кН∙м

3 стержень. Рассмотрим сечение Х3.

Поперечные силы:

Qz = 0

Qy = q1∙Х3- P3,

При Х3=0 Qу=-Р3=-4 кН

При Х3=с=2 м Qу=3∙2-4=2 кН

Так как эпора Qу меняет знак найдем точку пересечения с осью Х:

q1∙Х3- P3=0 →Х33/q1=4/3=1,333 м

Изгибающие моменты:

Му=0 Mz = q1Х32/2-Р3∙Х3;

Момент зависит от координаты Х2 во второй степени, следовательно он изменяется по параболе. Причем переходит через максимум в точке перемены знака эпюрой Qу Выражение для момента справедливо по всей длине бруса, т.е: 0≤Х3≤с

при Х3=0 Mz = 0

при Х3=с=2 м Mz = 3∙22/2-4∙2=-2 кН∙м

при Х3=1,333 м Мz=3∙1,3332/2-4∙1,333=-2,66 кН∙м

Крутящий момент Мх=0

Нормальная сила Nx =0.

На рисунке 2 представлены эпюры поперечных и продольных сил, изгибающих и крутящих моментов.

Рис. 2. Эпюры сил и моментов

  1.  Определение размеров поперечных сечений и вычисление напряжений.

1 стержень: вид деформации – косой изгиб+сжатие.

Условие прочности для стержня: ;

Величиной пренебрегаем ввиду малого значения.

- для стали.

момент сопротивления сечения балки , так как .

; h = b = 17 см.

Вычислим σ в четырех точках сечения:

- условие прочности выполнено.

Рис. 3. Эпюра распределения напряжений в сечении стержня 1

2 стержень: вид деформации – косой изгиб + кручение+растяжение.

Условие прочности (по третьей теории прочности):

где ; .

Величиной пренебрегаем ввиду малого значения. Поперечное сечение второго стержня круглое, то изгиб будет плоским под действием результирующего момента

Момент сопротивления для круглого сечения

 

Наибольшие нормальные напряжения при изгибе:

Наибольшие касательные напряжения при изгибе , где F=π∙d2/4=π∙192/4=283,5 см2 

Наибольшие касательные напряжения при кручении

Проверка: кг/см2- условие прочности выполнено.

Эпюра распределения напряжений в сечении стержня

3 стержень: вид деформации – плоский изгиб.

Поперечное сечение бруса круглое,

Отсюда условие прочности примет вид:

, где

Наибольшие нормальные напряжения при изгибе:

- условие прочности выполнено.

Наибольшие касательные напряжения при изгибе (по формуле Журавского для круглого сечения):

изг. = , где F=π∙d2/4=π∙122/4=113,1 см2

Эпюра распределения напряжений в сечении стержня

  1.  Выбор наиболее экономичного профиля стержня.

Предположим, что профиль поперечного сечения стержней на всех трех участках одинаков. Необходимо выбрать профиль сечения, имеющего наименьшую металлоемкость из следующих трех: круг, прямоугольник  и трубчатое сечение . Опасным сечением стержня является точка с наибольшими значениями изгибающего и крутящего моментов, то есть в начале сечения второго стержня.

Условие прочности (по третьей теории прочности): ,

где

Условие прочности примет вид:

отсюда  

Определим площади поперечных сечений:

  1.  Для круглого сечения W = 0,1d3

;

  1.  Для квадратного сечения: b = h

F2 = bh=258 см2.

  1.  Для трубчатого сечения:

;

Таким образом, наименьшую площадь поперечного сечения имеет трубчатый профиль, следовательно, он является наиболее экономичным.

Список литературы

1. «Сопротивление материалов. Расчет стержневой конструкции на сложное сопротивление». Санкт-Петербург 1994 год.

2.    Беляев Н.М. «Сопротивление материалов».


 

А также другие работы, которые могут Вас заинтересовать

24143. Предпосылки образования русского централизованного государства 26.01 KB
  Особенности русского централизованного государства Русское централизованное государство сложилось в XIVXVI вв. Группы предпосылок образования русского централизованного государства. Его князья строят государственный аппарат для укрепления своей власти; внешнеполитические: главная внешнеполитическая задача Руси заключалась в необходимости свергнуть татаромонгольское иго которое тормозило развитие Русского государства.
24144. Этапы образования Русского централизованного государства 44.43 KB
  на северозападе русских земель возникло государство Великое княжество Литовское. на востоке от русских земель возникло другое сильное государство Золотая Орда. Видя слабость русских земель Литва стала очень активно присоединять русские земли. Литва на 3 4 стала состоять из русских земель.
24145. Российское государство при Иване III 29.71 KB
  Во внутренней политике Иван III как и его отец продолжает собирать русские земли под московским началом. Иван III присоединил к Москве Ростовское и Тверское Рязанское Белозерское и Дмитровское княжества. Такой ход дел не устраивал Ивана III стремившегося объединить все русские земли под московским началом.
24146. КУЛЬТУРА XIV-XV ВВ. 36.63 KB
  Со второй половины XIV в. Высокие образцы народнопоэтической речи дают и другие московские памятники XIV XV столетий. Составление летописей и других сочинений переписка рукописей переживают подъем со второй половины XIV в.
24147. Реформы Ивана 4 Грозного 27.57 KB
  После его смерти на Руси началось боярское правление. Особенностью его прихода к власти было то что впервые в истории Руси великий князь был венчан на царство и получил титул царя: термин царь пришел на Русь от монголотатар; до падения ига царем называл себя главный хан Золотой Орды; данным титулом золотоордынский царь подчеркивал свою власть над всеми как над другими ханами так и над русскими князьями которые ездили в Орду на поклон к царю; впервые приняв титул царь Иван Грозный показал свою абсолютную суверенность...
24149. Культура России в XVI в. 32.19 KB
  Фольклор Фольклор XVI в. в XVI в. Публицистика XVI в.
24150. Культура России в 1598-1613 гг 25.48 KB
  Первый период смуты характеризуется борьбой за престол различных претендентов. Таким образом первый этап смуты был отмечен правлением Лжедмитрия I 1605 1606 гг. Второй период смуты. Третий период смуты характеризуется борьбой с иноземными захватчиками.
24151. Экономическое развитие России в XVII в. XVII в 21.87 KB
  XVII в время массового заселения Волги Предуралья начало освоения Сибири. Новым было в XVII в. Всего в XVII в.