4768

Метод искусственного базиса. Понятие двойственной задачи линейного программирования

Контрольная

Информатика, кибернетика и программирование

Метод искусственного базиса М -задача. Для многих задач линейного программирования, записанных в форме основной задачи и имеющих опорные планы, среди векторов Pj не всегда есть m единичных. Рассмотрим такую задачу. Пусть требуется найти максимум...

Русский

2012-11-26

69 KB

100 чел.

Метод искусственного базиса (М-задача).

Для многих задач линейного программирования, записанных в форме основной задачи и имеющих опорные планы, среди векторов Pj не всегда есть m единичных.

Рассмотрим такую задачу:

Пусть требуется найти максимум функции

F = c1x1 + c2x2 + ……+ cnxn    (1)

при условиях

………………………………………     (2)

где bi  0 (i=l, m), m<.n и среди векторов P1, P2, …, Pn нет m единичных.

Определение. Задача, состоящая в определении максимального значения функции

F = c1x1 + c2x2 + ……+ cnxn xn+1- …- Мxn+m   (3)

при условиях

………………………………………      (4)

где M — некоторое достаточно большое положительное число, конкретное значение которого обычно не задается, называется расширенной задачей (М-задачей) по отношению к задаче (1) — (2).

Расширенная задача имеет опорный план

Х=(0; 0; ...; 0; b1; b2; ...;bm).

определяемых системой единичных векторов Pn+1; Рп+2, … Рп+т, образующих базис m-ro векторного пространства, который называется искусственным. Сами векторы, так же как и переменные xn+i (i=l, m), называются искусственными. Так как расширенная задача имеет опорный план, то ее решение может быть найдено симплексным методом.

Теорема Если в оптимальном плане X*=(x*1, x*2, ...; x*n, x*n+1; ...; x*n+m) расширенной задачи (3) — (4) значения искусственных переменных x*n+i=0 (i=1, m), то X*=(x*1, x*2, ...; x*n) является оптимальным планом задачи (1) — (2).

Таким образом, если в найденном оптимальном плане расширенной задачи, значения искусственных переменных равны нулю, то тем самым получен оптимальный план исходной задачи.

Значения индексной строки ∆0, ∆1, …, ∆n состоят из двух частей, одна из которых зависит от M, а другая — нет. Заполняют симплекс - таблицу, которая содержит на одну строку больше, чем обычная симплексная таблица. При этом в (m+2)-ю строку помещают коэффициенты при M, а в (m+1)-ю – слагаемые, не содержащие M. При переходе от одного опорного плана к другому в базис вводят вектор, соответствующий наибольшему по абсолютной величине отрицательному числу (m+2)-й строки. Искусственный вектор, исключенный из базиса, в следующую симплекс-таблицу не записывают. Пересчет симплекс-таблиц при переходе от одного опорного плана к другому производят по общим правилам симплексного метода.

Итерационный процесс по (m+2) -и строке ведут до тех пор, пока:

  1.  либо все искусственные векторы не будут исключены из базиса;
  2.  либо не все искусственные векторы исключены, но (m+2)-я строка не содержит больше отрицательных элементов в индексах ∆1, …, ∆n.

В первом случае базис отвечает некоторому опорному плану исходной задачи и определение ее оптимального плана продолжают по (m+1)-й строке.

Во втором случае, если значение ∆0 отрицательное, исходная задача не имеет решения; если же ∆0=0, то найденный опорный план исходной задачи является вырожденным и базис содержит по крайней мере один из векторов искусственного базиса.

Этапы нахождения решения задачи (1) — (2)

методом искусственного базиса:

  1.  Составляют расширенную задачу (3) — (4).
  2.  Находят опорный план расширенной задачи.
  3.  С помощью обычных вычислений симплекс-метода исключают искусственные переменные из базиса. В результате либо находят опорный план исходной задачи (1) — (2), либо устанавливают ее неразрешимость.
  4.  Используя найденный опорный план задачи (1) — (2), либо находят симплекс-методом оптимальный план исходной задачи, либо устанавливают ее неразрешимость.

Пример. 

Найти минимум функции F= - 2x1 + 3x2 - 6x3 - x4

при ограничениях:

2x1+x2-2x3+x4=24

x1+2x2+4x3≤22

x1-x2+2x3≥10

xi≥0, i=1,4

Решение.

Запишем данную задачу в форме основной задачи: найти максимум функции F=  2x1 - 3x2 + 6x3 + x4

при ограничениях:

2x1+x2-2x3+x4=24

x1+2x2+4x3+x5=22

x1-x2+2x3- x6=10

xi≥0, i=1, 6

В системе уравнений последней задачи рассмотрим векторы из коэффициентов при неизвестных:

Среди векторов P1, Р2,P6 только два единичных (P4 и P5). Поэтому в левую часть третьего уравнения системы ограничений задачи добавим дополнительную неотрицательную переменную х7 и рассмотрим расширенную задачу, состоящую в максимизации функции

F=  2x1 - 3x2 + 6x3 + x4 - Мх7

при ограничениях:

2x1+x2-2x3+x4=24

x1+2x2+4x3+x5=22

x1-x2+2x3- x6 +x7=10

Расширенная задача имеет опорный план Х=(0; 0; 0; 24; 22; 0; 10), определяемый системой трех единичных векторов: P4, P5, Р7.

Понятие двойственной (соапряженной) задачи линейного программирования.

Правила построения двойственной задачи.

С каждой задачей линейного программирования (ЗЛП), которая называется двойственной задачей (или сопряженной) по отношению к исходной задаче, которая называется прямой.

Двойственная задача строится по отношению к прямой задаче, записанной в стандартной форме:

F=c1x1+c2x2+…+cnxn       max    (3.6)

a11x1+a12x2+…+a1nxn ≤ b1,

a21x1+a22x2+…+a2nxn ≤ b2,

………………………………

ak1x1+ak2x2+…+aknxn ≤ =bk,     (3.7)

ak+1,1x1+ak+1,2x2+…+ak+1,nxn=bk+1,

………………………………

am1x1+am2x2+…+amnxn=bm,

xj ≥ 0, , l ≤ n    (3.8)

Задача, состоящая в нахождении минимального значения функции

   

L = b1y1 + b2y2 + … + bmym         (3.9)   

при условиях

 a11y1 + a12y2 +…+ am1ym  ≥ c1

a21y1 + a22y2 +…+ am2ym ≥ c2 

………………………………

a1ly1 + a2ly2 +…+ amlym  ≥ cl     (3.10)

al+1,1y1 + al+1,2y2 +…+ al+1,mym = cl+1 

………………………………

am1y1 + am2y2 +…+ amnym = cm

yi ≥ 0,    ,    k ≤ m    (3.11)

называется двойственной по отношению к задаче (3.6) – (3.8).

Правила построения двойственной задачи приведены в таблице:


Структурные характ
еристики ЗЛП

Задача линейного программирования

Прямая

Двойственная

1. Целевая функция

Максимизация (max)

Минимизация (min)

2. Количество переменных

n переменных

Равно количеству ограничений прямой задачи (3.7),  yi,  т.е. m

3. Количество ограничений

m ограничений

Равно количеству переменных прямой задачи xj, , т.е n

4. Матрица коэффициентов в системе ограничений

5. Коэффициенты при переменных в целевой функции

c1,c2,…,cn      

b1,b2,…,bm

6. Правая часть системы ограничений

b1,b2,…,bm

c1,c2,…,cn      

7. Знаки в системе ограничений

а) xj ≥ 0- условие неотрицательности

j-е ограничение имеет знак «≥»

б) на переменную  xj  не наложено условие неотрицательности

j-е ограничение имеет знак «=»

в) i-е ограничение имеет знак «≤»

переменная  yi≥0

г)  i-е ограничение имеет знак «=»

на переменную  yi   не наложено условие неотрицательности

Примечание

  1.  Прямая задача на максимум и двойственная на минимум являются взаимодвойственными задачами. Поэтому можно считать задачу (3.9) – (3.11) прямой ЗЛП , а задачу (3.6) – (3.8) – двойственной к ней задачей. При этом правила построения двойственной ЗЛП сохраняются, лишь с тем изменением, что исходной считается задача на минимум.
  2.  Если исходная задача решается на  max (min), а в системе ограничений ) i-е (j-е) ограничение имеет знак «≤» («≥»), то для построения двойственной задачи необходимо:

а) либо домножить обе части  i-го (j-го) неравенства на (-1) и поменять знак на «≤» («≥»)

б) либо привести  i-е (j-е) ограничение к равенству путем введения дополнительной переменной xn+i≥0


 

А также другие работы, которые могут Вас заинтересовать

56526. Урок Тригонометричні функції числового аргументу 268 KB
  Мета уроку: повторити, систематизувати й узагальнити знання учнів з теми; розвивати логічне мислення, пізнавальну діяльність, вміння застосовувати властивості тригонометричних функцій до побудови графіків...
56527. Розв’язування тригонометричних рівнянь 2.9 MB
  Розглянемо такі тригонометричні рівняння. Рівняння які зводяться до квадратних відносно тригонометричної функції. Рівняння які розвязуються за допомогою рівності однойменних тригонометричних функцій. Лінійні рівняння відносно синуса і косинуса.
56528. Тригонометричні функції гострого кута прямокутного трикутника 83 KB
  Мета: формування поняття тригонометричних функцій гострого кута прямокутного трикутника дослідницько-евристичним методом; розвивати уміння учнів узагальнювати результати досліджень, спостережливість, прийоми аналізу і синтезу...
56529. Розв’язування прямокутних трикутників 519 KB
  Продовжте речення: Синус кута дорівнює відношенню протилежного катета до. гіпотенузи; cos 30o = ; Сума квадратів катетів дорівнює квадрату гіпотенузи; Прилеглий катет дорівнює добутку гіпотенузи на косинус кута...
56530. Трикутники. Сторони. Кути. Основа. Висота. Розпізнавання та креслення трикутників 276.5 KB
  Розпізнавання та креслення трикутників. Наочність: таблиця Трикутники малюнки трикутників Тип уроку: формування нових знань умінь і навичок Перебіг уроку. Види трикутників за кутами. Відшукування видів трикутників за допомогою косинця.
56531. Розв’язування трикутників 685 KB
  Мета уроку: формувати навички і вміння з розвязування трикутників. Час виконання 1 Організаційний момент 7хв 2 Актуалізація опорних знань 7хв 3 Розвязування вправ 16хв 4 Самостійна робота 10хв 5 Підсумок уроку 5хв...
56532. Сума кутів трикутника 197.5 KB
  Мета: Навчальна: Поглибити знання учнів про властивості трикутників Формувати уміння застосовувати вивчені властивості при розв’язуванні задач Провести діагностику засвоєння системи знань та умінь і її застосування для...
56533. ОЗНАКИ РІВНОСТІ ТРИКУТНИКІВ 743.5 KB
  У даній роботі представлена методична розробка уроків теми «Ознаки рівності трикутників», яка складається з 8-ми уроків та різнорівневої контрольної роботи. Розробка дає змогу подивитися на тему під іншим кутом зору.
56534. Трикутник. Перша і друга ознаки рівності трикутників 8.2 MB
  Перевірка домашнього завдання Після чого обирається по одному учневі з кожного ряду які отримують по 1 листку з 10ма твердженнями інша частина учнів виконують на місцях аналогічне завдання. Ні слайд 2 На домашнє завдання учням було задано вправи на знаходження градусних мір...