4768

Метод искусственного базиса. Понятие двойственной задачи линейного программирования

Контрольная

Информатика, кибернетика и программирование

Метод искусственного базиса М -задача. Для многих задач линейного программирования, записанных в форме основной задачи и имеющих опорные планы, среди векторов Pj не всегда есть m единичных. Рассмотрим такую задачу. Пусть требуется найти максимум...

Русский

2012-11-26

69 KB

98 чел.

Метод искусственного базиса (М-задача).

Для многих задач линейного программирования, записанных в форме основной задачи и имеющих опорные планы, среди векторов Pj не всегда есть m единичных.

Рассмотрим такую задачу:

Пусть требуется найти максимум функции

F = c1x1 + c2x2 + ……+ cnxn    (1)

при условиях

………………………………………     (2)

где bi  0 (i=l, m), m<.n и среди векторов P1, P2, …, Pn нет m единичных.

Определение. Задача, состоящая в определении максимального значения функции

F = c1x1 + c2x2 + ……+ cnxn xn+1- …- Мxn+m   (3)

при условиях

………………………………………      (4)

где M — некоторое достаточно большое положительное число, конкретное значение которого обычно не задается, называется расширенной задачей (М-задачей) по отношению к задаче (1) — (2).

Расширенная задача имеет опорный план

Х=(0; 0; ...; 0; b1; b2; ...;bm).

определяемых системой единичных векторов Pn+1; Рп+2, … Рп+т, образующих базис m-ro векторного пространства, который называется искусственным. Сами векторы, так же как и переменные xn+i (i=l, m), называются искусственными. Так как расширенная задача имеет опорный план, то ее решение может быть найдено симплексным методом.

Теорема Если в оптимальном плане X*=(x*1, x*2, ...; x*n, x*n+1; ...; x*n+m) расширенной задачи (3) — (4) значения искусственных переменных x*n+i=0 (i=1, m), то X*=(x*1, x*2, ...; x*n) является оптимальным планом задачи (1) — (2).

Таким образом, если в найденном оптимальном плане расширенной задачи, значения искусственных переменных равны нулю, то тем самым получен оптимальный план исходной задачи.

Значения индексной строки ∆0, ∆1, …, ∆n состоят из двух частей, одна из которых зависит от M, а другая — нет. Заполняют симплекс - таблицу, которая содержит на одну строку больше, чем обычная симплексная таблица. При этом в (m+2)-ю строку помещают коэффициенты при M, а в (m+1)-ю – слагаемые, не содержащие M. При переходе от одного опорного плана к другому в базис вводят вектор, соответствующий наибольшему по абсолютной величине отрицательному числу (m+2)-й строки. Искусственный вектор, исключенный из базиса, в следующую симплекс-таблицу не записывают. Пересчет симплекс-таблиц при переходе от одного опорного плана к другому производят по общим правилам симплексного метода.

Итерационный процесс по (m+2) -и строке ведут до тех пор, пока:

  1.  либо все искусственные векторы не будут исключены из базиса;
  2.  либо не все искусственные векторы исключены, но (m+2)-я строка не содержит больше отрицательных элементов в индексах ∆1, …, ∆n.

В первом случае базис отвечает некоторому опорному плану исходной задачи и определение ее оптимального плана продолжают по (m+1)-й строке.

Во втором случае, если значение ∆0 отрицательное, исходная задача не имеет решения; если же ∆0=0, то найденный опорный план исходной задачи является вырожденным и базис содержит по крайней мере один из векторов искусственного базиса.

Этапы нахождения решения задачи (1) — (2)

методом искусственного базиса:

  1.  Составляют расширенную задачу (3) — (4).
  2.  Находят опорный план расширенной задачи.
  3.  С помощью обычных вычислений симплекс-метода исключают искусственные переменные из базиса. В результате либо находят опорный план исходной задачи (1) — (2), либо устанавливают ее неразрешимость.
  4.  Используя найденный опорный план задачи (1) — (2), либо находят симплекс-методом оптимальный план исходной задачи, либо устанавливают ее неразрешимость.

Пример. 

Найти минимум функции F= - 2x1 + 3x2 - 6x3 - x4

при ограничениях:

2x1+x2-2x3+x4=24

x1+2x2+4x3≤22

x1-x2+2x3≥10

xi≥0, i=1,4

Решение.

Запишем данную задачу в форме основной задачи: найти максимум функции F=  2x1 - 3x2 + 6x3 + x4

при ограничениях:

2x1+x2-2x3+x4=24

x1+2x2+4x3+x5=22

x1-x2+2x3- x6=10

xi≥0, i=1, 6

В системе уравнений последней задачи рассмотрим векторы из коэффициентов при неизвестных:

Среди векторов P1, Р2,P6 только два единичных (P4 и P5). Поэтому в левую часть третьего уравнения системы ограничений задачи добавим дополнительную неотрицательную переменную х7 и рассмотрим расширенную задачу, состоящую в максимизации функции

F=  2x1 - 3x2 + 6x3 + x4 - Мх7

при ограничениях:

2x1+x2-2x3+x4=24

x1+2x2+4x3+x5=22

x1-x2+2x3- x6 +x7=10

Расширенная задача имеет опорный план Х=(0; 0; 0; 24; 22; 0; 10), определяемый системой трех единичных векторов: P4, P5, Р7.

Понятие двойственной (соапряженной) задачи линейного программирования.

Правила построения двойственной задачи.

С каждой задачей линейного программирования (ЗЛП), которая называется двойственной задачей (или сопряженной) по отношению к исходной задаче, которая называется прямой.

Двойственная задача строится по отношению к прямой задаче, записанной в стандартной форме:

F=c1x1+c2x2+…+cnxn       max    (3.6)

a11x1+a12x2+…+a1nxn ≤ b1,

a21x1+a22x2+…+a2nxn ≤ b2,

………………………………

ak1x1+ak2x2+…+aknxn ≤ =bk,     (3.7)

ak+1,1x1+ak+1,2x2+…+ak+1,nxn=bk+1,

………………………………

am1x1+am2x2+…+amnxn=bm,

xj ≥ 0, , l ≤ n    (3.8)

Задача, состоящая в нахождении минимального значения функции

   

L = b1y1 + b2y2 + … + bmym         (3.9)   

при условиях

 a11y1 + a12y2 +…+ am1ym  ≥ c1

a21y1 + a22y2 +…+ am2ym ≥ c2 

………………………………

a1ly1 + a2ly2 +…+ amlym  ≥ cl     (3.10)

al+1,1y1 + al+1,2y2 +…+ al+1,mym = cl+1 

………………………………

am1y1 + am2y2 +…+ amnym = cm

yi ≥ 0,    ,    k ≤ m    (3.11)

называется двойственной по отношению к задаче (3.6) – (3.8).

Правила построения двойственной задачи приведены в таблице:


Структурные характ
еристики ЗЛП

Задача линейного программирования

Прямая

Двойственная

1. Целевая функция

Максимизация (max)

Минимизация (min)

2. Количество переменных

n переменных

Равно количеству ограничений прямой задачи (3.7),  yi,  т.е. m

3. Количество ограничений

m ограничений

Равно количеству переменных прямой задачи xj, , т.е n

4. Матрица коэффициентов в системе ограничений

5. Коэффициенты при переменных в целевой функции

c1,c2,…,cn      

b1,b2,…,bm

6. Правая часть системы ограничений

b1,b2,…,bm

c1,c2,…,cn      

7. Знаки в системе ограничений

а) xj ≥ 0- условие неотрицательности

j-е ограничение имеет знак «≥»

б) на переменную  xj  не наложено условие неотрицательности

j-е ограничение имеет знак «=»

в) i-е ограничение имеет знак «≤»

переменная  yi≥0

г)  i-е ограничение имеет знак «=»

на переменную  yi   не наложено условие неотрицательности

Примечание

  1.  Прямая задача на максимум и двойственная на минимум являются взаимодвойственными задачами. Поэтому можно считать задачу (3.9) – (3.11) прямой ЗЛП , а задачу (3.6) – (3.8) – двойственной к ней задачей. При этом правила построения двойственной ЗЛП сохраняются, лишь с тем изменением, что исходной считается задача на минимум.
  2.  Если исходная задача решается на  max (min), а в системе ограничений ) i-е (j-е) ограничение имеет знак «≤» («≥»), то для построения двойственной задачи необходимо:

а) либо домножить обе части  i-го (j-го) неравенства на (-1) и поменять знак на «≤» («≥»)

б) либо привести  i-е (j-е) ограничение к равенству путем введения дополнительной переменной xn+i≥0


 

А также другие работы, которые могут Вас заинтересовать

81602. Исследование характеристик позиционно чувствительного нейтронного детектора на пучках релятивистских протонов 5.41 MB
  В работе описан созданный для эксперимента FLINT позиционно чувствительный детектор. FLINT – эксперимент о поиску флуктон-флуктонного взаимодействия проводимый с 2006 года по настоящее время в ИТЭФ. Основной задачей эксперимента является изучение плотной холодной ядерной материи.
81603. Разработка проекта реконструкции системы электроснабжения промышленного предприятия (Улан-Удэнский авиационный завод) 12.39 MB
  В данном дипломном проекте решаются различные вопросы такие как: определение токов короткого замыкания расчет релейной защиты и автоматики определяются потери мощности и электроэнергии рассматриваются показатели качества электрической энергии.
81604. Основные и второстепенные способы номинации современных русских жаргонов НМО 533 KB
  Кроме того, на протяжении нескольких лет автор работы является непосредственным носителем жаргона одного из неформальных молодёжных объединений. Многие из тех, кто составляет его близкое окружение, также являются так называемыми «неформалами» разных направлений.
81605. Эволюция образа латиноамериканцев в поп-культуре США (на материале развлекательных телепрограмм) 2.05 MB
  Цель данной работы – проследить эволюцию образа латиноамериканцев на телевидении США за последние десять лет на материале наиболее популярных развлекательных телепередач и выяснить, как проявляется влияние латиноамериканской культуры на массовую американскую поп-культуру в телевизионных развлекательных СМИ.
81606. Разработать адаптированную технологию работы с медиаданными, видео- и служебными форматами при видеомонтажных работах в рамках произвоственной видеостудии кафедры ИКТ – Viditory 6.16 MB
  На каждом этапе развития технологий в области цифрового видеопроизводства растет спектр видеопродукт и растет спрос на них. Различные кинокомпании вещательные компании и отдельные видеостудии занимают одну из центральных ролей в инфраструктуре цифрового видео.
81607. Разработка системы базового финансового учёта для организации 556.19 KB
  Целью данной работы является разработка системы, позволяющая организовать и автоматизировать финансовые взаимоотношения между сотрудником и работодателем внутри организации. Задачи, которые были решены в этой работе: анализ существующих на рынке решений; азработка прототипа; проектирование и разработка системы;
81608. Бухгалтерский учёт, анализ и аудит: Методические указания 413.5 KB
  Выпускная квалификационная работа призвана показать глубину усвоения выпускником теоретических и практических знаний по специальности, умение грамотно и аргументировано излагать свои мысли и формулировать конкретные предложения по улучшению ведения учетно-аналитической работы в организациях.
81609. Перевод с английского юмористических рассказов В. Аллена 580.5 KB
  Ориентиром и примером стояли перед глазами давно любимые пьесы Ионеско, но в то же время было понятно, что найти ненайденный ещё в наш активный, даже перенасыщенный переводческий век необработанный алмаз почти невозможно.
81610. Финансы и кредит: Методические рекомендации 486.5 KB
  В формулировку темы ВКР необходимо включить конкретное название объекта на примере которого проводится исследование. Конкретизировать тему можно следующим образом: Анализ основных финансовых показателей деятельности предприятия на примере.