4786

Множества в программировании на языке Pascal

Лекция

Информатика, кибернетика и программирование

Множества. Множественный тип. Конструктор множества. Операции и отношения. Применения множеств в программировании. Задачи и упражнения. Еще одним сложным стандартным типом данных, определенным в языкеPasca...

Русский

2012-11-27

47 KB

15 чел.

Множества.

1.Множественный тип.

2.Конструктор множества.

3.Операции и отношения.

4.Применения множеств в программировании.

5.Задачи и упражнения.

 1. Множественный тип.

Еще одним сложным стандартным типом данных, определенным в языке Pascal, является множественный тип. Значением множественного типа данных является множество, состоящее из однотипных элементов. Тип элемента множества называется базовым типом. Базовым типом может быть скалярный или ограниченный тип. Таким образом, множество значений множественного типа - это множество всех подмножеств базового типа, включая и пустое множество. Если базовый тип содержит N элементов, соответствующий множественный тип будет содержать 2N элементов.

Характерное отличие множественного типа - определение на нем наиболее распространенных теоретико-множественных операций и отношений. Это делает множественный тип похожим на простые типы данных. Множественные типы описываются в разделе типов следующим образом :

Type < имя типа > = Set of < базовый тип>

  Множественный

  тип

 

Например,

а) Type Beta = Set of 100..200;

б) Type Glas = Set of char ; {Vowel}

в) Type Color = (red, orange, yellow, green, light_blue, blue, violet); 

Paint = Set of Color;

г) Type TwoDigNum = Set of 10..99;

Var A, B: Beta;

llet, flet: Glas;

last, first: Paint;

  Sinit: TwoDigNum;

2. Конструктор множества.

Множества строятся из своих элементов с помощью конструктора множества. Конструктор представляет собой перечисление через запятую элементов множества или отрезков базового типа, заключенное в квадратные скобки [ , ]. Пустое множество обозначается через [].

  конструктор

 Элемент

 конструктора

 

 

Например:

[ ] - пустое множество

[2, 5 ..7] - множество {2, 5, 6, 7}

['A'..'Z', 'O'..'9'] - множество, состоящее из всех прописных латинских букв и цифр

[i + j .. i + 2*j] - множество, состоящее из всех целых чисел между i + j и i + 2j

Отметим, что если в выражении [v1..v2] v1 > v2, множество [v1 .. v2] - пустое.

3. Операции и отношения.

К операндам - однотипным множествам А и В применимы следующие операции :

А + В - объединение А В

А * В - пересечение А В

А - В - разность А \ В

Между А и В определены также отношения порядка и равенства

А = В,   А <> В,  А < В, А <= В,  А > В,   А >= В;

Отношения порядка интерпретируются как теоретико-множественные включения.

Если А - множество и х - элемент базового типа, то определено отношение принадлежности  х  in  A - x принадлежит A ( x A ).

Каждое из отношений, описанных выше, по-существу является операцией, результат которой имеет тип Boolean. Таким образом, если Init - переменная типа Boolean, возможно присваивание Init := A < B. Возможны такие сравнения ( А = В ) = ( С = D ).

Наличие операций над множествами позволяет применять в программах операторы присваивания, в левой части которых стоит переменная типа множества, а в правой - выражение того же типа. Например :

А := А * [1 .. 10] + B ;  B := (А + B)*['A' .. 'Z'] ;

4. Применения множеств в программировании.

При реализации языка размеры множеств всегда ограничены константой, зависящей от реализации. Обычно эта константа кратна длине машинного слова. Это происходит потому, что множества реализованы в виде логических (двоичных) векторов следующим образом: каждой координате двоичного вектора однозначно соответствует один из элементов базового типа. Если элемент a принадлежит представляемому множеству A, то значение координаты вектора, соответствующее a, равно 1. В противном случае значение соответствующей координаты равно 0.

Например, если множество A описано как Set of 0..15, то его представляет 16-ти мерный двоичный вектор, координаты которого перенумерованы от 0 до 15, и i-той координате соответствует элемент i базового типа.

Базовый тип :  0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

Двоичный вектор :  0  0  1  1  0  1  0  1  0  0  0  1    0   1   0    0

Представленное множество : A = [2, 3, 5, 7, 11, 13]

Такой способ реализации позволяет быстро выполнять операции над множествами и проверки теоретико-множественных отношений. Поэтому, например, вместо

For X := 'A' to 'Z' do

    If (X ='A') or (X ='E') or  (X ='I') or (X ='O') or (X='U')

        then Statement1

        else Statement2

лучше написать

 For X := 'A' to 'Z' do

   If X in ['A','E','I','O','U']

                then Statement1

                else Statement2

Последняя форма записи не только лучше читается, но и гораздо быстрее вычисляется.

В системе Turbo-Pascal максимальное количество элементов в множестве равно 256. Таким образом, в качестве базового типа можно выбрать, например, Char или отрезок 0..255. В заключение раздела приведем пример программы, использующей множественные типы данных.

Пример. Построить множество всех простых чисел из отрезка 2..n  (n 255).

Метод, с помощью которого мы это сделаем, известен как "Решето Эратосфена". Суть этого метода в следующем: Пусть Prime - строимое множество простых чисел и Grating - множество, называемое решетом. Алгоритм начинает работу с Prime = []; Grating = [2..n].

 Шаг основного цикла:

 а. Наименьший элемент Grating поместить в Prime;

 б. Удалить из Grating все числа, кратные этому элементу;

 Алгоритм заканчивает работу при Grating = []

Program EratosfenGrating;

   Const n = 255;

      Var Grating, Prime: set of 2 .. n ;

             i, Min : integer ;

 Begin

   Grating := [2 .. n] ; Prime := [] ; Min := 2;  {инициализация}

   While Grating <> [] do begin    {основной цикл}

      While not(Min in Grating) do   {поиск наименьшего элемента в решете}

         Min := Min + 1;

         Prime := Prime + [Min] ;    {пополнение множества простых чисел}

         For i := 1 to n div Min do    {исключение кратных из решета}

           Grating := Grating - [i*Min];

    end;

    Writeln('Primes: ');     {вывод множества простых чисел}

     For i := 1 to n do  

        If i in Prime then write(i, ', ')

End.

Отметим, что доступ к элементу множества в языке не предусмотрен. В этом - еще одно качественное отличие множественного типа от других сложных типов данных. Поэтому, например, для вывода множества Prime приходится перебирать все элементы базового типа и каждый из них проверять на принадлежность Prime.

5. Задачи и упражнения.

1. Записать с помощью конструктора множество X, составленное из латинских букв a, b, c, d, i, j, k, x, y, z.

2. Записать с помощью конструктора множество из трех основных цветов множественного типа Paint.

3. Записать с помощью конструктора множество целых решений квадратного неравенства x^2 +p*x + q < 0 в предположении, что корни соответствующего квадратного уравнения лежат в интервале [0; 255]

4. Записать с помощью конструктора множество простых чисел-близнецов из интервала 1..30.


Имя типа

=

 Set

of  

 Базовый тип

 Элемент конструктора

  [

  ]

 ,

 ..

Выражение

Выражение

Выражение


 

А также другие работы, которые могут Вас заинтересовать

26187. БИОХИМИЯ КОСТНОЙ ТКАНИ, ТКАНЕЙ ЗУБА, БИОХИМИЯ СЛЮНЫ 58 KB
  В ней преобладает межклеточное вещество содержащее большое количество минеральных компонентов главным образом солей кальция. В компактном веществе кости большая часть минеральных веществ представлена гидроксилапатитом смотрите рисунок и аморфным фосфатом кальция. Это позволяет кости легко связывать или отдавать ионы фосфата поэтому кость это депо для минералов особенно для кальция. ФАКТОРЫ ВЛИЯЮЩИЕ НА ОБМЕН КАЛЬЦИЯ И ФОСФОРА На обменкальция и фосфора влияют гормоны ПАРАТГОРМОН СЕРОТОНИН и активная форма витамина D3.
26190. Диссоциативные расстройства 14.55 KB
  В современной психиатрии термин диссоциативные расстройства используется для обозначения трех феноменов: возникновения множественной личности психогенной фуги психогенной амнезии. В американской классификации DSMIV термины диссоциативный и конверсионный имеют разное значение: понятие конверсионное расстройство используют для определения тех психологически детерминированных расстройств которые проявляются соматическими симптомами; в то время как понятие диссоциативные расстройства относится к расстройствам которые проявляются...
26191. Депресси́вный синдро́м 19.74 KB
  При депрессии снижена самооценка наблюдается потеря интереса к жизни и привычной деятельности.Различают униполярные депрессии при которых настроение остаётся в пределах одного сниженного полюса и биполярные депрессии являющиеся составной частью биполярного аффективного расстройства которые перемежаются маниакальными гипоманиакальными либо смешанными аффективными эпизодами. Можно выделить следующие формы униполярных депрессий Большое депрессивное расстройство часто называемое клинической депрессиейМалая депрессия которая не...
26192. Медикаментозное лечение и психотерапия 15.73 KB
  Психотерапия Психотерапия является не альтернативой а важным дополнением к медикаментозному лечению депрессий. В отличие от медикаментозного лечения психотерапия предполагает более активную роль пациента в процессе лечения. Психотерапия помогает больным развить навыки эмоциональной саморегуляции и в дальнейшем более эффективно справляться с кризисными ситуациями не погружаясь в депрессию.
26193. Нарушения психической деятельности при маниакальных состояниях 11.65 KB
  Женщины заболевают примерно в 2 раза чаще чем мужчины.У подростков значительно чаще классических вариантов наблюдаются депрессии в форме психопатических эквивалентов с асоциальным поведением. Депрессивные фазы встречаются в несколько раз чаще.