47920

Криволінійний рух та рух точки по колу

Лекция

Физика

Змістовий модуль 2 Криволінійний рух та рух точки по колу Теоретичне ядро Кінематика криволінійного руху матеріальної точки. Кінематика руху матеріальної точки по колу. Одним із поширених рухів матеріальної точки є механічний рух траєкторія якого довільна крива лінія. Найпростішими криволінійними рухами точки є рухи по кривій ІІ порядку: колу – круговий рух; еліпсу – еліптичний рух; а також рух по параболі гіперболі і т.

Украинкский

2013-12-04

2.37 MB

24 чел.

ІІІ. Змістовий модуль 2

Криволінійний рух та рух точки по колу

Теоретичне ядро

Кінематика криволінійного руху матеріальної точки. Кінематика  руху матеріальної точки по колу.

Прискорення при криволінійному русі. Нормальне і тангенціальне прискорення.

Одним із поширених рухів матеріальної точки є механічний рух, траєкторія якого довільна крива лінія. Такий рух називається криволінійним. Найпростішими криволінійними рухами точки є рухи по кривій ІІ порядку: колу – круговий рух; еліпсу – еліптичний рух; а також рух по параболі, гіперболі і т.д.

Розглянемо довільний криволінійний рух точки. В загальному випадку вектор швидкості довільного криволінійного руху змінюється, як за модулем так і за напрямом.

Повне прискорення, що характеризує зміну вектора швидкості в одиницю часу, повинно враховувати обидва типа цих змін вектора швидкості.

Звідси висновок: вектор повного прискорення повинен мати 2 складові, що відповідно характеризують вище зазначені зміни вектора , а саме: нормальне (або доцентрове) прискорення ; тангенціальне (або дотичне) прискорення .

Фізичний зміст і  

Складова вектора повного прискорення, що характеризує бистроту зміни вектора  за напрямом, називається нормальним або доцентровим прискоренням.  

Складова вектора повного прискорення, що характеризує бистроту зміни вектора  за модулем, називається тангенціальним або дотичним прискоренням.

Тобто  .

Визначення модуля та напряму векторів і .

Нехай матеріальна точка рухається по довільній криволінійній траєкторії відносно СВ (OXYZ) і в момент часу t займає положення А на траєкторії, маючи в цей момент швидкість . Розглянемо її положення і швидкість через довільний проміжок часу t, тобто в момент часу (t+t):

т. А: ;  

т. В:  (див. рис. 2.1.)

Рис. 2.1.

Знайдемо зміну вектора швидкості за t. Для цього паралельно перенесемо вектор  в початкову точку А і відкладемо на ньому вектор , модуль якого . Побудуємо вектори: , , .

Тоді: з ΔDCE: .

Так, як . Звідси, враховуючи, що  маємо   ;   .

, де  при

Із ΔАDC:   (S=φR)

З другого боку:  і ;    ;    

                                        (1-14) 

Модуль  чисельно дорівнює квадрату лінійної швидкості, розділеному на радіус кривизни траєкторії руху.

Визначимо модуль :

, де

;

                                               (1-15)

Модуль  чисельно визначається першою похідною за часом, від числового значення вектора швидкості.

Напрям і .

При зменшені t вектор  буде повертатись навколо т. А і в границі співпаде з вектором .

Вектор , що визначатиме напрям  буде зменшуватись, повертатись також навколо т. А і в граничному випадку приймає напрям, перпендикулярний .

Таким чином, ; , а значить: , тобто вектор  направлений по радіусу кривизни траєкторії до її центра.

Напрям  визначається вектором .

Дійсно, при , вектор  приймає напрям дотичної до траєкторії в т. А. Таким чином, вектор  направлений по дотичній до траєкторії в точці, яка розглядається.

Для прискореного руху: ; для сповільненого руху: .

Висновок:

                                (1-15а)

Рух матеріальної точки по околу (обертальний рух матеріальної точки) та його характеристики.

Найпростішим типом криволінійного руху матеріальної точки є рух точки по колу або обертальний рух. Вектор лінійної швидкості в загальному випадку змінюється як за модулем величині, так і за напрямом.

Положення довільної т. М на колі можна задати, крім дугової координати (відрізка елемента дуги, що вимірюється від початку руху) S ще й кутом повороту радіуса кола за даний проміжок часу.

Рис. 2.2.

Кут повороту радіуса кола, проведеного від центра кола в дану точку, що здійснюється за деякий проміжок часу називається кутовим зміщенням.

Основними кінематичними характеристиками обертового руху є кутова швидкість і кутове прискорення.

Кутова швидкість – фізична величина, яка характеризує бистроту зміни кутового зміщення і визначається границею відношення кутового зміщення до відповідного проміжку часу при .

                                  (1-16)

Кутова швидкість визначається першою похідною від кутового зміщення за часом.

Кутове прискорення – фізична величина, яка характеризує бистроту зміни кутової швидкості і визначається границею відношення зміни кутової швидкості до відповідного проміжку часу при , тобто кутове прискорення визначається першою похідною за часом від кутової швидкості або другою похідною за часом від кутового зміщення.

                                 (1-17)

Рис. 2.2.

Вектор кутового зміщення .

Нескінченно малий або елементарний поворот точки на деякий кут  можна задати у вигляді направленого (вектора) відрізка, довжина якого дорівнює , а напрям співпадає з віссю, відносно якої здійснюється поворот. Для визначення напряму застосовується правило правого гвинта: напрям кутового зміщення повинно бути таким, щоб дивлячись вздовж нього, було видно поворот, який здійснювався проти ходу годинникової стрілки.

Вектори кутової швидкості і кутового прискорення.

Раніше було з’ясовано, що елементарне кутове зміщення  можна розглядати як векторну величину.

Вектор елементарного кутового зміщення  є напрямлений відрізок, що чисельно дорівнює куту повороту, напрямлений по осі обертання в сторону, яка вказуються правилом правого гвинта. Як відомо, за цим правилом напрям вектора повинен збігатись з поступальним рухом гвинта, якщо його, ручку повертати за напрямом обертання.

Таким чином, кутова швидкість і кутове прискорення – вектори, напрямлені по осі обертання.

Кутова швидкість – векторна фізична величина, що характеризує бистроту і напрям обертання.

Кутова швидкість – вектор, напрямлений вздовж осі обертання таким чином, щоб з його кінця було видно обертання, що здійснюється проти годинникової стрілки (правило правого гвинта).

Кутове прискорення – це вектор, що збігається з напрямом кутової швидкості в прискорених рухах, або напрямлений проти кутової швидкості в сповільнених рухах.

,

На відміну від розглянутих векторів , напрями, яких очевидні, вважаються істинними векторами; вектори  і називаються псевдовекторами.

Прискорене обертання

Сповільнене обертання

Рис. 2.3.

   

Зв’язок лінійних і кутових величин

Рух тіла (точки) по колу зручно описувати сукупністю 2 типів параметрів, що називаються лінійним:  і кутовими:

Встановимо зв’язок між ними.

Так як , то взявши похідну за часом: ; ;

                                                     (1-18)       

  ;                         (1-19)

                                 (1-20)

Рівняння рівномірного і рівнозмінного руху точки по колу.

а) Рівномірний рух по колу – це обертання точки з постійною кутовою швидкістю, або рух з постійним за модулем вектором лінійної швидкості:

;  

Виходячи з початкових умов, встановимо межі інтегрування:

При   ; ;   ;

при  ;

Тоді:

;  ;

Інтегруючи, дістанемо закон рівномірного обертання:

;                              (1-21)

аналогія:  з прямолінійним рівномірним рухом якщо:

а) ;   ;  ;   

Рівномірне обертання точки характеризується тільки однією складовою вектора прискорення – нормальним прискоренням.

б) Рівнозмінний рух по колу – це обертання точки з постійним кутовим прискоренням:

– прискорення;

– сповільнення.

Тоді:

Проводячи інтегрування дістанемо формулу кутової швидкості

;  ;

                                     (1-21)

аналогія:  з прямолінійним рівнозмінним рухом

;

Проводячи інтегрування, отримаємо, закон рівнозмінного обертання.                                

;           (1-22)

аналогія:  з прямолінійним рівнозмінним рухом.

PAGE  8


 

А также другие работы, которые могут Вас заинтересовать

84076. Терморегуляция у детей младшего возраста 31.18 KB
  Температура тела ребенка в первые месяцы жизни не вполне постоянна. Она может изменяться под влиянием различных факторов: охлаждения или перегревания тела приема пищи крика и так далее. Так у новорожденных на 1 кг массы тела приходится 700 см2 кожи у десятилетних детей 425 см2 а у взрослых 220 см2. Накопление тепла в организме способствует повышению температуры тела.
84077. Предмет и задачи анатомии и физиологии, предмет и задачи возрастной анатомии и физиологии 29.86 KB
  Физиология – наука о функциях живого организма как единого целого о процессах протекающих в нём и механизмах его деятельности. В настоящее время физиология и анатомия накопили огромный фактический материал. Это привело к тому что от физиологии и от анатомии отпочковываются две самостоятельные науки – это возрастная анатомия и возрастная физиология. Возрастная физиология – это наука которая изучает особенности процесса жизнедеятельности организма на разных этапах онтогенеза.
84078. Современные методы изучения организма. Клетка, строение животной клетки 33.92 KB
  Клетка строение животной клетки. Масса и длина тела окружность грудной клетки и талии обхват плеча и голени толщина кожножировой складки – все это и многое другое традиционно измеряют антропологи с помощью медицинских весов ростомера антропометра и других специальных приспособлений. В каждой клетке различают две основные части цитоплазму и ядро в цитоплазме в свою очередь содержатся органоиды мельчайшие структуры клетки обеспечивающие ее жизнедеятельность митохондрии рибосомы клеточный центр и др. В ядре перед делением...
84079. Ткани, органы и системы органов 30.93 KB
  Особенностью соединительной ткани является сильное развитие межклеточного вещества. К соединительной ткани относятся кровь лимфа хрящевая костная жировая ткани. Благодаря сокращению скелетных мышц становится возможным передвижение тела в пространстве; особое строение сердечной мышечной ткани обеспечивает одновременное сокращение больших участков сердечной мышцы. Структурной единицей нервной ткани является нервная клетка нейрон состоящий из тела овальной звездчатой или многоугольной формы и отходящих от него отростков.
84080. Общие принципы регуляции работы организма 22.35 KB
  Регуляция в живых организмах представляет собой совокупность процессов обеспечивающих необходимые режимы функционирования достижение определенных целей или полезных для организма приспособительных результатов. Процесс физиологической регуляции является основой самоудовлетворения потребностей живого организма.
84081. Эндокринная система, эндокринные железы и функции основных гормонов 31.16 KB
  Железа внутренней секреции производит гландулярные гормоны к которым относятся все стероидные гормоны гормоны щитовидной железы и многие пептидные гормоны. Диффузная эндокринная система представлена рассеянными по всему организму эндокринными клетками продуцирующими гормоны называемые агландулярными за исключением кальцитриола пептиды. Гормоны органические соединения вырабатываемые определенными клетками и предназначенные для управления функциями организма их регуляции и координации. Гормоны биологические активные вещества...
84082. Нервная система, принципы нервной регуляции 46.5 KB
  Нервная система – одна из важнейших систем, которая обеспечивает координацию и регуляцию протекающих в организме процессов и устанавливает взаимосвязь с внешней средой. Изучает ее работу – неврология.
84083. Скелет. Функции костной системы. Особенности строения костей и их соединений 74.95 KB
  Особенности строения костей и их соединений. Скелет это комплекс костей различных по форме и величине. У человека более 200 костей 85 парных и 36 непарных которые в зависимости от формы и функции делятся на: трубчатые кости конечностей; губчатые выполняют в основном защитную и опорную функции ребра грудина позвонки и др. Эластичность упругость костей зависит от наличия в них органических веществ а твердость обеспечивается минеральными солями.
84084. Рост и развитие скелета, зоны роста костей, периоды ускоренного роста человека 29.7 KB
  Под зонами роста понимают хрящевые участки костной структуры человека в позвоночнике и на окончаниях трубных костей. Пока на этих участках находится не огрубевшая ткань возможно значительное увеличение длины тела под влиянием гормонов роста. Позже когда зоны роста закрываются стимулировать удлинение тела становится невероятно сложной или даже невозможной задачей.