48301

Общая физика, теоретические основы

Контрольная

Физика

Системы координат. С этой целью вводится система координат. Система координат позволяет определить положение тела в пространстве. Но нужна еще совокупность тела отсчета связанных с ним координат и синхронизирующих часов это система отсчета.

Русский

2015-01-15

359.5 KB

1 чел.

Физика – наука, изучающая наиболее общие закономерности явлений природы, свойства, строение материи и законы ее движения.

Слово «физика» происходит от греческого слова physics – природа.

Физика экспериментальная наука: ее законы базируются на фактах, установленных опытным путем. Законы физики представляют собой количественные отношения и формулируются на математическом языке.

Различают экспериментальную физику и теоретическую физику.

При изучении любого явления опыт и теория в равной мере необходимы и взаимосвязаны.

Современная физика содержит небольшое число фундаментальных физических теорий, охватывающих все разделы физики. Эти теории являются знаниями о характере физических процессов и явлений, наиболее полно отображающих формы движения материи.

Курс общей физики состоит из:

Механика;

Молекулярная физика;

Электричество и магнетизм;

Оптика;

Атомная и ядерная физика.

Движение материи имеет различные формы: механическую, электромагнитную, тепловую и т. д. Законы механического движения изучаются в первом разделе – в механике. Изучение остальных разделов невозможно без знания механики, т.к. перемещения имеют место почти при всех физических процессах.

Механику обычно делят на три части: кинематику, статику и динамику.

В кинематике рассматривается движение тел вне связи с причинами, которые вызывают это движение.

В статике изучаются законы равновесия системы тел.

В динамике – законы движения тел и причины, которые вызывают или изменяют это движение.

Мир, окружающий нас – материален. Он состоит из вечно существующей, находящейся  в постоянном движении материи.

Материя – это все, что существует во вселенной от элементарных частиц, до электромагнитных волн.

Частицы материи перемещаются относительно друг друга со скоростями, которые принято подразделять на медленные (нерелятивистские) и быстрые (релятивистские, т.е. порядка с=300000 км/с). В этом смысле скорость искусственного спутника Земли медленная (8 км/с). При скоростях, близких к с заметное влияние оказывают релятивистские эффекты.

В природе существуют качественно различные связи в системах:

Ядро " протоны, нейтроны,…

Атом " ядро, электроны.

Молекулы " атомы.

Солнечная система " планеты.

Принято различать 4 вида взаимодействия:

Сильное взаимодействие » 1;

Электромагнитное взаимодействие (связи в атомах и молекулах) » 10-3;

Слабое взаимодействие (распад элементарных частиц) » 10-14;

Гравитационное » 10-40;

Земля:

3,5 млрд. лет (3,5×109 лет) – возраст;

3-3,5 млн. лет (3,5×106 лет) – жизнь;

40 тыс. лет (4×104 лет) – Homo Sapiens.

The Earth ~ сутки   

Life  ~ 1 минута

Homo Sapiens ~ 1 секунда

1687 г. – Ньютон: «Математические начала натуральной философии». Законы ньютоновской механики.

1831 г. – Фарадей открыл явление электромагнитной индукции (электромагнитные поля).

1873 г. – Максвелл: «Трактат об электричестве и магнетизме».

1895 г. – Попов изобрел радио.

1900 г. – Макс Планк открыл квант.

1905 г. – Эйнштейн: «Специальная теория относительности».

1928 г. – Дирак открыл спин.

1931 г. – Был открыт позитрон.

1939-1945 гг. – в США была создана атомная бомба.

1960 г. – Был создан лазер.

Системы координат. Системы отсчета

Все механические процессы происходят в пространстве и времени. Это находит отражение в любом механическом законе.

Положение тела в пространстве может быть определено только по отношению к другим телам. Тело отсчета – тело (система неподвижных тел), которое служит для определения положения интересующего нас тела.

Кроме тела отсчета нужна система, которая обеспечивала бы «адреса» других тел. С этой целью вводится система координат. Система координат позволяет определить положение тела в пространстве. Но нужна еще совокупность тела отсчета, связанных с ним координат и синхронизирующих часов – это система отсчета.

Заметим, что удачный выбор системы координат существенно облегчает решение задачи. Рассмотрим основные типы систем координат:

1. Прямоугольная Декартова:

А) Двухмерная;

Б) Трехмерная;

2. Цилиндрическая система координат:

Задание: Найти координаты точки (1,1,1) в цилиндрической системе координат.

3. Сферическая система координат:

Задание: Найти координаты точки (1,1,1) в сферической системе координат.

Формулы, связывающие координаты точки в одной системе отсчета с координатами в другой системе, называют формулами преобразования координат.

Скалярные, векторные величины. Действия над ними. Вычисление компонент вектора. Орты.

Для удобства координаты точки в любой системе координат будем обозначать одной буквой:

Вектор – направленный отрезок прямой, у которого один конец называется началом, а другой конец – концом. Модуль, направление, точка приложения, нулевой вектор.

Два вектора равны, если они имеют одинаковые модули и направление.

Противоположным вектору  называют вектор .

Действия над векторами:

Сумма векторов:

Правило треугольника ;

Правило прямоугольника;

Если при действии над векторами результат не изменяется при перестановке векторов, то говорят, что вектора обладают свойством коммутативности относительно этого действия.

Разность векторов или ;

Умножение вектора на число ;

Скалярное произведение векторов:

Скалярным произведение векторов называют произведение модулей этих векторов на косинус угла между ними. Т.е. результат скалярного произведения – скаляр.

.

Обладает свойством коммутативности.

Пример: .

Векторное произведение:

В результате векторного произведения получается вектор, модуль которого равен произведению модулей перемножающихся векторов на синус угла между ними. Результирующий вектор направлен перпендикулярно плоскости перемножаемых векторов и направлен в сторону движения правого винта, если вращать его от первого вектора ко второму по кратчайшему пути.

Модуль вектора C равен площади параллелограмма, построенного на A и B.

Компоненты векторных величин.

Орты:

Скалярное и векторное произведение орт:

Скалярные произведения одноименных орт равны 1, разноименных – 0.

Векторное произведение одноименных орт равно 0. Модуль векторного произведения разноименных орт равен 1.

Действия над векторами в координатной форме.

Сумма векторов:

Компонент суммы двух векторов – сумма компонент слагаемых.

Скалярное произведение:

Векторное произведение:

Радиус вектор – вектор, проведенный из начала координат в данную точку.

Перемещение и скорость в векторной и координатной формах.

Траектория – линия, вдоль которой движется тело.

Путь – расстояние вдоль траектории.

Перемещение – кратчайшее расстояние.

Вектором мгновенной скорости называют вектор, равный производной радиус-вектора по времени (направлен по касательной).

При прямолинейном движении .

Абсолютное значение скорости (модуль):

В общем случае при прямолинейном движении

Если , то через параметры траектории:

Ускорение в векторной и координатной формах.

вектор среднего ускорения (скорость изменения скорости)

1.

Вращательное движение:

Изменение линейной скорости по направлению (меняется только направление).

Вектор ускорения – вторая производная вектора перемещения по времени.

Кинематика вращательной точки. Угловая скорость.

n – число оборотов.

Если w=const, то w - круговая  (циклическая) частота.

Т – период (время одного оборота).

- линейная частота.

Модуль  равен углу поворота и направлен по оси вращения так, что направление поворота отвечает правилу винта.

- угловое ускорение.

При равноускоренном движении вектор  направлен в ту же сторону что и .

При равнозамедленном – в обратную.

Вектора r, v и a называют естественными или полярными векторами.

Вектора  - аксиальными.

Аксиальные вектора введены для объяснения физических процессов при вращательном движении. Они, так же как и полярные вектора подчиняются правилу сложения векторов.

Связь между линейными и угловыми величинами.

, r – радиус-вектор.

По определению векторного произведения .

an=aц – изменение скорости по направлению за единицу времени.

at – изменение скорости по модулю за единицу времени. При равномерном движении at=0.

Преобразование координат и компонент векторов.

Формулы, связывающие координаты точки в одной системе координат с координатами в другой называются преобразование координат.

(1)

Для определения компоненты x умножим скалярно (1) на i:

Тогда (2) запишем для случая ax=0 (поворот):

Пример: Преобразование координат для двухмерного случая.

Значение скалярной величины определяется одним числом.

Значение вектора определяется тремя числами, которые называют компоненты вектора.

Более общее определение вектора:

Вектор – это упорядоченная совокупность трех чисел, зависящих от системы координат и преобразующихся при повороте системы отсчета так же, как преобразуются компоненты вектора.

При параллельном переносе компоненты вектора не изменяются:

Вектор тот же, но системы разные.

означает в координатной форме равенство компонент.

Величины, значения которых не изменяются при преобразованиях, называются инвариантами.

Вращение вокруг неподвижной оси.

Для точки mi имеем:

Рассмотрим момент импульса относительно оси 0. Общий момент импульса равен:

- двойное векторное произведение.

или

Запишем проекцию Nx:

Аналогично преобразуем Nz .

Введем инерциальные коэффициенты или моменты инерции:

Имеем:

,       ,      .

Здесь обозначения аналогичные.

Совокупность величин   образует тензор инерции.

Тензор симметричный, т.е.  и т.д. Таким образом тензор инерции определяется 6 числами.

Главные оси тензора инерции.

Симметричный тензор можно представить наглядно в виде эллипсоида, в данном случае эллипсоида инерции.

Тензор (второго ранга) – упорядоченная система 9 чисел, которые связывают два вектора.

Вектор (тензор первого ранга)   – упорядоченная система трех чисел, которые преобразуются при изменении системы координат.

Скаляр (тензор нулевого ранга)– число, не изменяющееся при изменении системы координат.


X

M (x, y, z)

x1

Z

Y

y1

z1

M (x, y)

x1

y1

Y

X

(r, j, z)

z

r

j

x

y

a

Q

rx=x

ry=y

t

v

t1

t2

Dti

1

2

R

Dj

O

x1

x2

l1

l2

x¢1

l¢1

l¢2

x¢2

0

mi

ri

z

y

x

x1

y1

z1

M (r, , )

r


 

А также другие работы, которые могут Вас заинтересовать

3921. Дослідження критеріїв прийняття рішення при вирішенні двухальтернативної задачі 206 KB
  Дослідження критерії прийняття рішення при вирішенні двухальтернативної задачі Мета роботи: дослідити критерій максимума правдоподібності, максимума апостеріорної ймовірності, критерій Котельнікова та критерій Неймана-Пірсона ХІД ВИКОНАННЯ ПРАКТИЧНО...
3922. Ручное регулирование параметров объекта управления 151.5 KB
  Ручное регулирование параметров объекта управления Цель: приобретение навыков ручного ведения процессов регулирования, вызываемых возмущениями по нагрузке и по заданию. Опыт 1: Стабилизация регулируемой величины Таблица 1. Процесс регулировани...
3923. Экспериментальное определение частотных характеристик объекта 54.94 KB
  Экспериментальное определение частотных характеристик объекта Цель: изучение методики экспериментального определения частотных характеристик объекта управления, а также практическое освоение приемов обработки результатов 'эксперимента при внесении объекту прямоугольных входных колебаний.
3924. Сучасна ситуація в області інформаційної безпеки 51.5 KB
  Сучасна ситуація в області інформаційної безпеки Поняття інформаційної безпеки Перш ніж говорити про інформаційну безпеку необхідно з’ясувати, що таке інформація. Поняття «інформація» сьогодні вживається дуже широко і різнобічно. Важко знайти т...
3925. Мотивація та моделі поведінки в організації 224 KB
  Мотивація та моделі поведінки в організації Вступ Актуальність. Процеси трансформації економічно-економічної системи в Україні вимагають нових рішень з організації ділової активності суспільства у багатьох сферах. Зокрема, ефективна організація прац...
3926. Передаточные функции объектов управления 99 KB
  Передаточные функции объектов управления. Цель: изучить формы представления передаточных функций объектов управления в среде программирования «MatLab» или других (напр. SCILAB, GAP). Определение нулей и полюсов передаточной функции >> G=tf([0...
3927. Работа агрегата Центробежный насос ЭЦНГ-10С76 89 KB
  Основными характеристиками надежности объектов эксплуатации являются функция плотности распределения наработок изделий до отказа f(t), функция распределения наработок изделий до отказа (Вероятность отказа есть функция распределения време...
3928. Общая статистика. Значение группировок и интервалов 276.5 KB
  Сводка и группировка. На основе собранных данных нельзя произвести расчет и сделать выводы, для начала их нужно обобщить и свести в единую таблицу. Для этих целей служат сводка и группировка. Сводка – комплекс последовательных операций по обобщ...
3929. Сутність поняття соціальна технологія 749 KB
  Сутність поняття «соціальна технологія» полягає в наступних пунктах: Соціальна технологія — це певний спосіб здійснення людської діяльності по досягненню суспільно значимих цілей Сутність даного способу полягає в поопераційному з...