48643

РАСЧЕТ ИДЕАЛЬНОГО ЦИКЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Курсовая

Производство и промышленные технологии

КОРОЛЕВА Расчетно-пояснительная записка курсовой работе РАСЧЕТ ИДЕАЛЬНОГО ЦИКЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Вариант 19 В результате работы определены: параметры состояния рабочего тела в термодинамических процессах идеального цикла газотурбинного двигателя его энергетические показатели. Результаты расчетов характеристик идеального цикла ГТД представлены в графической форме. Содержание Расчёт состава рабочего тела цикла Расчет состава рабочего тела Расчет оптимального значения степени повышения давления...

Русский

2013-12-13

1.39 MB

24 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ

АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

имени академика С. П. КОРОЛЕВА

Расчетно-пояснительная записка курсовой работе

“РАСЧЕТ ИДЕАЛЬНОГО ЦИКЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ”

Вариант 19

Выполнил: Суходубова Е.Ю.

                  гр. 2311

Проверил: Угланов Д.А.

Оценка:

Дата:

Самара 2009


Реферат

Пояснительная записка: 27 стр.

Рисунков: 3

Таблиц: 8

Источников: 7

РАБОЧЕЕ ТЕЛО, ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА, ПРОЦЕСС, ЦИКЛ, ПАРАМЕТРЫ СОСТОЯНИЯ, ЗАКОН ИДЕАЛЬНОГО ГАЗА, ТЕПЛОТА, ВНУТРЕННЯ ЭНЕРГИЯ, РАБОТА, ТОПЛИВО, РАБОЧАЯ СМЕСЬ, ПРОДУКТЫ СГОРАНИЯ.

Цель работы: расчет параметров состояния рабочего тела и энергетических характеристик газотурбинного двигателя.

В результате работы определены: параметры состояния рабочего тела в термодинамических процессах идеального цикла газотурбинного двигателя, его энергетические показатели. Результаты расчетов характеристик идеального цикла ГТД представлены в графической форме.

Содержание

[1] Расчёт состава рабочего тела цикла

[2] Расчет состава рабочего тела

[3] Расчет оптимального значения степени повышения давления в компрессоре ГТД

[4] Определение коэффициента избытка воздуха

[5]  

[6] 1.4. Расчет состава продуктов сгорания и рабочей смеси

[7] Расчёт параметров состояния рабочего тела и энергетических характеристик двигателя.

[8] Расчёт основных параметров состояния рабочего тела в узловых точках цикла ГТД.

[9] Расчёт калорических величин цикла ГТД.

[9.0.1] Изменение внутренней энергии, энтальпии и энтропии в процессах цикла.

[9.0.2] Расчёт теплоты процессов и тепла за цикл.

[9.0.3] Расчёт удельной работы процессов и за цикл.

[10]  Расчёт параметров состояния рабочего тела в промежуточных точках процессов сжатия и расширения.

[10.0.1] Процессы, изображаемые в  P – V координатах.

[10.0.2] Процессы, изображаемые в T – S координатах.

[11] Расчёт энергетических характеристик ГТД.

[12] Заключение

[13] 4. Список использованных источников.


Список условных обозначений

Н - высота полета, м;

M - число Маха;

- время, ч;

Т - температура, К;

R - тяга двигателя, Н;

p - давление, Н/м 2;

- плотность, кг/м 3;

Нu - низшая теплотворная способность топлива, кДж/кг;

сp - изобарная теплоемкость, Дж/кгК;

сv - изохорная теплоемкость, Дж/кгК;

k - показатель адиабаты;

- коэффициент избытка воздуха;

- молярная масса, кг/кмоль;

Ri - газовая постоянная, Дж/кгК;

т - масса компонента, кг;

М - моли компонентов, кмоль;

g - массовые доли компонента;

r - мольные доли компонентов;

u - внутренняя энергия, Дж/кг;

h - энтальпия, Дж/кг;

s - энтропия, Дж/кгК;

q - теплота, Дж/кг;

l - работа, Дж;

- удельный объем, м 3/кг;

- изменение параметра;

t  - термический КПД, %;

с0 - скорость набегающего потока, м/с;

с5 - скорость истечения газа, м/с;

Gвозд - удельная тяга двигателя, м/с;

ц - цикл;

opt - оптимальный;

T - топливо;

рс - рабочая смесь;

i - номер компонента, процесса;

- параметр (характеристика) относится к воздуху;

  - параметр (характеристика) относится к продуктам сгорания.


Введение

Основная цель курсовой работы по термодинамике – ознакомиться с методикой расчета параметров состояния рабочего тела в термодинамических процессах идеального цикла газотурбинного двигателя (ГТД), его энергетических характеристик, графического построения цикла.

На первом этапе определяются характеристики газовой смеси продуктов сгорания в условиях, когда при сжигании топлива в ГТД химический состав рабочего тела существенно изменяется.

На втором этапе определяются основные параметры состояния рабочего тела и другие энергетические характеристики двигателя, выполняется графическое построения цикла в  и T-S координатах.

В данной работе рассматривается ГТД имеющий цикл с подводом тепла при постоянном давлении, принципиальная схема которого показана на рис. 1.

1 – топливный насос;

2 – компрессор;

3 – камера сгорания;

4 – газовая турбина;

Рис. 2. Идеальный цикл ГТД при p=const: а – в координатах p-v; б – в координатах T-S.

Рис.3. Схема ТРД.

1 — входное устройство;

2 — компрессор;

3 — камера сгорания;

4—газоваятурбина;
5 — выхо
дной канал;

6 — сопло.

Предполагается, что процессы в цикле обратимы (цикл обратим), гидравлические, тепловые и механические потери отсутствуют, а рабочее тело идеальный газ.


Задание

Рассчитать идеальный цикл ГТД. Все необходимые данные приведены в таблицах 1, 2 и 3.

Таблица 1 - Исходные данные

Высота полета

Н, м

Число

М

Время

, ч

Температура

Т, К

Тяга двигателя

R, Н

10000

1,8

2

1200

5000

Таблица 2 - Международная стандартная атмосфера

Н, м

Т0 , К

р0 , Н/м 3

, кг/ м 3

10 5, Нс/ м 3

Содержание компонентов воздуха

N2

O2

CO2

H20

100000

223,3

26500

0,414

1,45

0,7729

0,2015

0,0083

0,0173

Таблица 3 - Физико-химические свойства керосина марки Т-1

Химическая

формула

Содержание серы и влаги, %

Плотность

при 20 С

Низшая теплотворная

способность HU , кДж/кг

C7,2 H13,3

0,005

0,775

43000

Изобарная теплоемкость при Т=0 С:      Изохорная теплоемкость при Т=0 С:

                                   

                                    

                                          

                                           

  1.  Расчёт состава рабочего тела цикла
    1.  Расчет состава рабочего тела

Определяются  удельные газовые постоянные для компонентов воздуха.

,

где   - изобарная теплоемкость;

- изохорная теплоемкость.

Для воздуха .

Определяются массовые доли компонентов воздуха.

, где  - молярная масса компонента;  - объемная доля компонента.

Определяются моли компонентов воздуха.

                                                

Определяется изобарная теплоемкость для газовой смеси.

Определяется изохорная теплоемкость для газовой смеси.

Определяются газовые постоянные.


  1.  Расчет оптимального значения степени повышения давления в компрессоре ГТД

Для заданного числа М полета оптимальное значение можно получить аналитически из условия, что при его значении полезная работа цикла ГТД - наибольшая. Обычно решение сводится к отысканию максимума функции . Этот максимум в идеальном цикле достигается при значении , равном .

  1.  Определение коэффициента избытка воздуха

Определение коэффициента избытка воздуха основано на обеспечении заданной температуры перед турбиной.

Определяется коэффициент избытка воздуха.

Для расчета примем соотношение j для заданного вида топлива CnHm .

В данном случае используется керосин марки C7,2 H13,3 .

 

1.4. Расчет состава продуктов сгорания и рабочей смеси

Определяются массы компонентов.

Определяются моли компонентов.

Определяются мольные доли компонентов.

, где

Определяются массовые доли компонентов.

, где

Определяется количество топлива, сгорающего в 1 кг воздуха.

Определяется масса рабочей смеси.

,

где =1 кг

Определяются массовые доли рабочей смеси.

Определяются теплоемкости рабочей смеси.

Определяются газовые постоянные.


Результаты расчетов приведены в таблице 4 и 5.

Таблица 4 - Состав рабочего тела ГТД

Характеристики

Компоненты

N2

O2

CO2

H2O

297

260

189

462

1039,2

915

814,8

1859,6

742,9

654,8

625,9

1398

32

28

44

18

mi , кг

Воздух

0,7523

0,2242

0,0127

0,0108

Прод. cг

0,7523

0,1718

0,0619

0,0208

Mi , кмоль

Воздух

0,0276

0,0063

0,00019

0,0009

Прод. cг

0,0276

0,0048

0,0012

0,001

gi

Воздух

0,7523

0,2242

0,0127

0,0108

Прод. cг

0,7471

0,1706

0,0615

0,0207

ri

Воздух

0,7729

0,2015

0,0083

0,0173

Прод. cг

0,7977

0,1387

0,0347

0,0289

Таблица 5 - Характеристики рабочего тела в цикле ГТД

Рабочее тело

Характеристики

m, кг

Воздух

1017,2

728,3

288,9

1,4

1

Продукты сгорания

1021,09

733,71

287,38

1,392

1,0155


  1.  Расчёт параметров состояния рабочего тела и энергетических характеристик двигателя.
    1.  Расчёт основных параметров состояния рабочего тела в узловых точках цикла ГТД.

Точка 1. Процесс 0-1 - адиабатное сжатие воздуха в диффузоре.

Точка 2. Процесс 1-2 - адиабатное сжатие воздуха в компрессоре.

Точка 3. Процесс 2-3 - изобарный подвод тепла в камере сгорания.

Степень повышения температуры:                                                      (6.6)

Точка 4. Процесс 3-4 - адиабатное расширение продуктов сгорания в турбине.

Точка 5. Процесс 4-5 - адиабатное расширение в реактивном сопле двигателя до давления окружающей среды .


  1.  Расчёт калорических величин цикла ГТД.
    1.  Изменение внутренней энергии, энтальпии и энтропии в процессах цикла.

Определяется внутренняя энергия в процессе.

Определяется энтальпия.

Определяется энтропия.

  1.  Расчёт теплоты процессов и тепла за цикл.

  1.  Расчёт удельной работы процессов и за цикл.

Определяется работа сжатия газа в диффузоре:

Определяется работа сжатия газа в компрессоре:

Определяется работа газа в турбине:

Определяется реактивного сопла:

Определяется работа цикла:

Результаты расчетов  приведены в таблице 6.

Таблица 6 - Основные параметры состояния рабочего тела в узловых точках цикла, изменение калорических параметров в процессах и за весь цикл идеального ГТД

Значения

Точки

Для

цикла

0

1

2

3

4

5

pi , Па

26500

152265,9

502644,96

502644,96

310041,3

26500

___

i , м 3/кг

2,434

0,698

0,299

0,686

0,971

5,7

___

Тi , К

223,3

368

520,3

1200

1047,7

526,42

___

Значения

Процесс

Для

цикла

0-1

1-2

2-3

3-4

4-5

5-0

u , Дж/кг

105385,01

110920,09

498702,69

-111744,03

-382468,35

-220762,29

33,12

h , Дж/кг

147188,84

154919,56

694034,87

-155512

-532273,8

-308333,66

23,81

    s,

Дж/кгK

0

0

841,35

0

0

-872,33

-30,98

qi , Дж/кг

0

0

687785,8

0

0

308333,7

379452,1

li , Дж/кг

-147188,84

-154919,56

0

155512

532273,8

0

385677,4


  1.   Расчёт параметров состояния рабочего тела в промежуточных точках процессов сжатия и расширения.
    1.  Процессы, изображаемые в  PV координатах.

Определение значений параметров P-V в промежуточных точках процессов 1-2, 3-4 и 4-5 позволит построить достаточно точные графики. Поскольку процессы 1-2 и 3-4 адиабатные, то для любой пары точек на них справедливы соотношения:

; ; ; .

Задаваясь значениями параметров , , ,  и используя известные величины p1 , p4 , p5 , определяются неизвестные pa , pb , pc , pd .

Расчетные значения промежуточных точек процессов откладываются на графике P-V и через них проводится кривая процесса (рис. 2 п.9). Значения точек сводятся в таблицу 7.

  1.  Процессы, изображаемые в TS координатах.

Полученные изменения энтропии откладываются в принятом масштабе на T-S диаграмме и по выбранным значениям Т определяются координаты промежуточных точек процесса, через которые проводится плавная кривая (рис. 3). Значения точек также сводятся в таблицу 7.

Таблица 7 - Параметры состояния рабочего тела в промежуточных точках процессов и изменение энтропии

Значения

Точки

a

b

c

d

p, Па

204706,87

298073,25

85362,5

41132,2

v, м 3/кг

0,565

0,432

2,38

3,79

T, K

747

973

425,4

324

Значения

Процесс

2-a 1

2-b 1

0-c 1

0-d 1

s, Дж/кгК

368

637,7

658

381

Расчет для процессов, изображаемых в p-v координатах.

    Рисунок 4 - Рабочая диаграмма цикла ГТД в p-v координатах

График используется для оценки равенства работы в идеальном цикле lрасч =lграф , найденных ранее расчетным путем и планиметрированием площади цикла.

где Sц - площадь цикла, найденная с помощью программы Компас-3D V9,

l - масштаб цикла.

Определяется погрешность:

Расчет для процессов, изображаемых в T-S координатах

Рисунок 5 - Тепловая диаграмма цикла ГТД в T-s координатах

График используется для оценки равенства тепла в идеальном цикле qрасч =qграф , найденных ранее расчетным путем и планиметрированием площади цикла.

где Sц - площадь цикла, найденная с помощью программы Компас-3D V9,

q - масштаб цикла.

Определяется погрешность:

  1.  Расчёт энергетических характеристик ГТД.

Определяется скорость набегающего потока:

Определяется скорость истечения рабочего тела из сопла двигателя:

Определяется удельная тяга двигателя:

Определяется секундный расход двигателя:

Определяется масса двигателя:

Определяется масса топлива, сгорающего в 1 кг воздуха:

Определяется суммарная масса топлива за время полета:

Определяется термический коэффициент полезного действия ГТД:

Результаты вычислений приведены в таблице 8.

Таблица 8 - Энергетические характеристики идеального ГТД

α

3,3011

4,28

385677,84

498,42

10,03

129,05

1119,348

56,08

  1.  Заключение

В данной работе был произведен расчет термодинамических параметров газотурбинного двигателя для заданного режима полета.

Был построен рабочий цикл ГТД в P-V и Т-S координатах.

Работа цикла была определена двумя методами - аналитическим и графическим, и был произведен подсчет погрешности.

.


4. Список использованных источников.

1. Мухачев Г.А., Щукин В.Е. Термодинамика и теплопередача. М.: Вьисш. шк., 1991. - 400 с.

2. Кирилин В.А., Сычев В.В., Шейндлин А.Е. Техническая термодинамика. М.: Энергоатомиздат, 1983. - 416 с.

3. Сборник задач по технической термодинамике и теплопередаче/ Под ред. Б.Н. Юдаева. М.: Высш. шк., 1968. - 372 с.

4. Требования к оформлению учебных текстовых документов: Метод. указания/ Сост. В.Н. Белозерцев, В.В. Бирюк, А.П.Толстоногов/ Куйбышев. авиац. ин-т. Куйбышев, 1988. - 29 с.

5. Белозерцев В.Н, Бирюк В.В., Толстоногов А.П. Методические указания по оформлению пояснительной записки к курсовой работе (проекту)/ Куйбышев. авиац. ин-т. Куйбышев, 1987. -16 с.

6. Меркулов А.П. Техническая термодинамика: Конспект лекций/ Куйбышев. авиац. ин-т. Куйбышев, 1990. - 235 с.

7. Толстоногов А.П. Техническая термодинамика: Конспект лекций/ Куйбышев. авиац. ин.-т. Куйбышев, 1990. - 100 с.





 

А также другие работы, которые могут Вас заинтересовать

39079. Влияние производственно-технологических факторов на потребность в топливе для автотракторной техники при ремонте магистральных нефтепроводов 4.28 MB
  Анализ современного состояния нефтепроводного транспорта Западной Сибири особенностей организации ремонтовнефтепроводов позволил сформулировать цель исследования:установление закономерностей влияния производственнотехнологических факторов на процесс потребления топлива автотракторной техники задействованной при ремонте магистральных нефтепроводов и разработки на этой основе методик управления запасами топлива и определения рациональной структуры парка топливозаправщиков Объект исследований – процесс формированияпотребности в топливе...
39080. Оболочка Moodle; история создания, спецификация. Процессы в Linux. Идентификаторы процессов 28.16 KB
  Демоны Возможности тестовой системы MOODLE. Среда дистанционного обучения СДО Moodle – это среда дистанционного обучения предназначенная для создания качественных дистанционных курсов. СДО Moodle – постоянно развивающийся проект основанный на теории социального конструктивизма.
39081. Управление процессами. Команды nice, nohup, kill, killall. Оболочка Moodle; архитектура, возможности 28.47 KB
  По мнению большинства исследователей занимающихся проблемами дистанционного обучения под последним следует понимать новую форму обучения базирующуюся на применении широкого спектра традиционных и новых информационных технологий а также технических средств которые используются для доставки учебного материала его самостоятельного изучения диалогового обмена между обучающимися и преподавателями и которая в общем случае некритична к их расположению в пространстве и контакту во времени. Вместе с тем эта новая специфическая форма обучения...
39082. Медиаобразовательная среда в контексте педагогического проектирования. Классификация и краткое описание средств организации электронного обучения 27.65 KB
  Ршгд Во всем многообразии средств организации электронного обучения можно выделить следующие группы: авторские программные продукты uthoring Pckges системы управления контентом Content Mngement Systems CMS системы управления обучением Lerning Mngement Systems LMS системы управления учебным контентом Lerning Content Mngement Systems LCMS Авторские программные продукты uthoring Pckges. Системы управления контентом CMS. Системы управления контентом позволяют создавать каталоги графических звуковых аудио...
39083. Навигация по файловой системе. Работа с файлами и каталогами Linux. Создание папки для хранения данных СДО Moodle 89.91 KB
  С этим можно согласиться но при одном условии – дистанционное обучение должно быть построено с необходимым и достаточным уровнем качества обучения. В сфере образования под качеством обучения подразумевается соответствие знаний и умений выпускников учебного заведения требованиям предъявляемым со стороны рынка труда. Вторая модель управления качеством образования основана на контроле не только знаний обучаемых но и процессов обучения их организации и применяемых средств.
39084. Настройка сети Debian Linux. Серверная структура СДО Moodle 44.99 KB
  Интерфейс СДО Moodle. Серверная структура СДО Moodle. Формы контроля знаний в системе дистанционного обучения Moodle. Система дистанционного обучения Moodle обладает интуитивно понятным интерфейсом.
39085. Понятие инструментальной системы для создания курсов ДОТ, преимущества и классификация. Описание структуры файловой системы Linux 21.75 KB
  Понятие инструментальной системы для создания курсов ДОТ преимущества и классификация. Инструментальные системы для создания курсов ДО ориентированы на пользователей тьюторов разработчиков курсов ДО. Преимущества инструментальных систем: существенно снижается время на разработку курсов; снижаются общие затраты организации на разработку и использование курсов ДО; обеспечивается современный уровень функциональных и коммуникационных возможностей и пользовательского графического интерфейса курсов; исключаются многие ошибки начинающих...
39086. Распределение прав доступа в Linux. Системные требования для развертывания СДО Moodle 27.66 KB
  Системные требования для развертывания СДО Moodle. Количество пользователей которые смогут пользоваться Moodle может быть ограничено производительностью сервера. Большинство предпочитают вебсервер pche но Moodle будет хорошо работать и с любым другим вебсервером который поддерживает PHP например IIS под Windows. Язык сценариев PHP обратите внимание что есть особенности установки Moodle с PHPccelertor.
39087. Дистанционные образовательные технологии: история и развитие в России. Учётные записи в Linux 45.52 KB
  А также необходимостью современной педагогики дать ответ на запрос общества по выработке новых педагогических средств обучения и воспитания в новой культурноинформационной среде. Глобальные изменения в информационнокультурной среде мы относим к макрофакторам способствующим появлению электронного обучения. Мезофакторами определяющими развитие электронного обучения являются современные философские культурологические психологические и педагогические теории отражающие современные реалии культуры.