48643

РАСЧЕТ ИДЕАЛЬНОГО ЦИКЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Курсовая

Производство и промышленные технологии

КОРОЛЕВА Расчетно-пояснительная записка курсовой работе РАСЧЕТ ИДЕАЛЬНОГО ЦИКЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Вариант 19 В результате работы определены: параметры состояния рабочего тела в термодинамических процессах идеального цикла газотурбинного двигателя его энергетические показатели. Результаты расчетов характеристик идеального цикла ГТД представлены в графической форме. Содержание Расчёт состава рабочего тела цикла Расчет состава рабочего тела Расчет оптимального значения степени повышения давления...

Русский

2013-12-13

1.39 MB

37 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ

АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

имени академика С. П. КОРОЛЕВА

Расчетно-пояснительная записка курсовой работе

“РАСЧЕТ ИДЕАЛЬНОГО ЦИКЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ”

Вариант 19

Выполнил: Суходубова Е.Ю.

                  гр. 2311

Проверил: Угланов Д.А.

Оценка:

Дата:

Самара 2009


Реферат

Пояснительная записка: 27 стр.

Рисунков: 3

Таблиц: 8

Источников: 7

РАБОЧЕЕ ТЕЛО, ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА, ПРОЦЕСС, ЦИКЛ, ПАРАМЕТРЫ СОСТОЯНИЯ, ЗАКОН ИДЕАЛЬНОГО ГАЗА, ТЕПЛОТА, ВНУТРЕННЯ ЭНЕРГИЯ, РАБОТА, ТОПЛИВО, РАБОЧАЯ СМЕСЬ, ПРОДУКТЫ СГОРАНИЯ.

Цель работы: расчет параметров состояния рабочего тела и энергетических характеристик газотурбинного двигателя.

В результате работы определены: параметры состояния рабочего тела в термодинамических процессах идеального цикла газотурбинного двигателя, его энергетические показатели. Результаты расчетов характеристик идеального цикла ГТД представлены в графической форме.

Содержание

[1] Расчёт состава рабочего тела цикла

[2] Расчет состава рабочего тела

[3] Расчет оптимального значения степени повышения давления в компрессоре ГТД

[4] Определение коэффициента избытка воздуха

[5]  

[6] 1.4. Расчет состава продуктов сгорания и рабочей смеси

[7] Расчёт параметров состояния рабочего тела и энергетических характеристик двигателя.

[8] Расчёт основных параметров состояния рабочего тела в узловых точках цикла ГТД.

[9] Расчёт калорических величин цикла ГТД.

[9.0.1] Изменение внутренней энергии, энтальпии и энтропии в процессах цикла.

[9.0.2] Расчёт теплоты процессов и тепла за цикл.

[9.0.3] Расчёт удельной работы процессов и за цикл.

[10]  Расчёт параметров состояния рабочего тела в промежуточных точках процессов сжатия и расширения.

[10.0.1] Процессы, изображаемые в  P – V координатах.

[10.0.2] Процессы, изображаемые в T – S координатах.

[11] Расчёт энергетических характеристик ГТД.

[12] Заключение

[13] 4. Список использованных источников.


Список условных обозначений

Н - высота полета, м;

M - число Маха;

- время, ч;

Т - температура, К;

R - тяга двигателя, Н;

p - давление, Н/м 2;

- плотность, кг/м 3;

Нu - низшая теплотворная способность топлива, кДж/кг;

сp - изобарная теплоемкость, Дж/кгК;

сv - изохорная теплоемкость, Дж/кгК;

k - показатель адиабаты;

- коэффициент избытка воздуха;

- молярная масса, кг/кмоль;

Ri - газовая постоянная, Дж/кгК;

т - масса компонента, кг;

М - моли компонентов, кмоль;

g - массовые доли компонента;

r - мольные доли компонентов;

u - внутренняя энергия, Дж/кг;

h - энтальпия, Дж/кг;

s - энтропия, Дж/кгК;

q - теплота, Дж/кг;

l - работа, Дж;

- удельный объем, м 3/кг;

- изменение параметра;

t  - термический КПД, %;

с0 - скорость набегающего потока, м/с;

с5 - скорость истечения газа, м/с;

Gвозд - удельная тяга двигателя, м/с;

ц - цикл;

opt - оптимальный;

T - топливо;

рс - рабочая смесь;

i - номер компонента, процесса;

- параметр (характеристика) относится к воздуху;

  - параметр (характеристика) относится к продуктам сгорания.


Введение

Основная цель курсовой работы по термодинамике – ознакомиться с методикой расчета параметров состояния рабочего тела в термодинамических процессах идеального цикла газотурбинного двигателя (ГТД), его энергетических характеристик, графического построения цикла.

На первом этапе определяются характеристики газовой смеси продуктов сгорания в условиях, когда при сжигании топлива в ГТД химический состав рабочего тела существенно изменяется.

На втором этапе определяются основные параметры состояния рабочего тела и другие энергетические характеристики двигателя, выполняется графическое построения цикла в  и T-S координатах.

В данной работе рассматривается ГТД имеющий цикл с подводом тепла при постоянном давлении, принципиальная схема которого показана на рис. 1.

1 – топливный насос;

2 – компрессор;

3 – камера сгорания;

4 – газовая турбина;

Рис. 2. Идеальный цикл ГТД при p=const: а – в координатах p-v; б – в координатах T-S.

Рис.3. Схема ТРД.

1 — входное устройство;

2 — компрессор;

3 — камера сгорания;

4—газоваятурбина;
5 — выхо
дной канал;

6 — сопло.

Предполагается, что процессы в цикле обратимы (цикл обратим), гидравлические, тепловые и механические потери отсутствуют, а рабочее тело идеальный газ.


Задание

Рассчитать идеальный цикл ГТД. Все необходимые данные приведены в таблицах 1, 2 и 3.

Таблица 1 - Исходные данные

Высота полета

Н, м

Число

М

Время

, ч

Температура

Т, К

Тяга двигателя

R, Н

10000

1,8

2

1200

5000

Таблица 2 - Международная стандартная атмосфера

Н, м

Т0 , К

р0 , Н/м 3

, кг/ м 3

10 5, Нс/ м 3

Содержание компонентов воздуха

N2

O2

CO2

H20

100000

223,3

26500

0,414

1,45

0,7729

0,2015

0,0083

0,0173

Таблица 3 - Физико-химические свойства керосина марки Т-1

Химическая

формула

Содержание серы и влаги, %

Плотность

при 20 С

Низшая теплотворная

способность HU , кДж/кг

C7,2 H13,3

0,005

0,775

43000

Изобарная теплоемкость при Т=0 С:      Изохорная теплоемкость при Т=0 С:

                                   

                                    

                                          

                                           

  1.  Расчёт состава рабочего тела цикла
    1.  Расчет состава рабочего тела

Определяются  удельные газовые постоянные для компонентов воздуха.

,

где   - изобарная теплоемкость;

- изохорная теплоемкость.

Для воздуха .

Определяются массовые доли компонентов воздуха.

, где  - молярная масса компонента;  - объемная доля компонента.

Определяются моли компонентов воздуха.

                                                

Определяется изобарная теплоемкость для газовой смеси.

Определяется изохорная теплоемкость для газовой смеси.

Определяются газовые постоянные.


  1.  Расчет оптимального значения степени повышения давления в компрессоре ГТД

Для заданного числа М полета оптимальное значение можно получить аналитически из условия, что при его значении полезная работа цикла ГТД - наибольшая. Обычно решение сводится к отысканию максимума функции . Этот максимум в идеальном цикле достигается при значении , равном .

  1.  Определение коэффициента избытка воздуха

Определение коэффициента избытка воздуха основано на обеспечении заданной температуры перед турбиной.

Определяется коэффициент избытка воздуха.

Для расчета примем соотношение j для заданного вида топлива CnHm .

В данном случае используется керосин марки C7,2 H13,3 .

 

1.4. Расчет состава продуктов сгорания и рабочей смеси

Определяются массы компонентов.

Определяются моли компонентов.

Определяются мольные доли компонентов.

, где

Определяются массовые доли компонентов.

, где

Определяется количество топлива, сгорающего в 1 кг воздуха.

Определяется масса рабочей смеси.

,

где =1 кг

Определяются массовые доли рабочей смеси.

Определяются теплоемкости рабочей смеси.

Определяются газовые постоянные.


Результаты расчетов приведены в таблице 4 и 5.

Таблица 4 - Состав рабочего тела ГТД

Характеристики

Компоненты

N2

O2

CO2

H2O

297

260

189

462

1039,2

915

814,8

1859,6

742,9

654,8

625,9

1398

32

28

44

18

mi , кг

Воздух

0,7523

0,2242

0,0127

0,0108

Прод. cг

0,7523

0,1718

0,0619

0,0208

Mi , кмоль

Воздух

0,0276

0,0063

0,00019

0,0009

Прод. cг

0,0276

0,0048

0,0012

0,001

gi

Воздух

0,7523

0,2242

0,0127

0,0108

Прод. cг

0,7471

0,1706

0,0615

0,0207

ri

Воздух

0,7729

0,2015

0,0083

0,0173

Прод. cг

0,7977

0,1387

0,0347

0,0289

Таблица 5 - Характеристики рабочего тела в цикле ГТД

Рабочее тело

Характеристики

m, кг

Воздух

1017,2

728,3

288,9

1,4

1

Продукты сгорания

1021,09

733,71

287,38

1,392

1,0155


  1.  Расчёт параметров состояния рабочего тела и энергетических характеристик двигателя.
    1.  Расчёт основных параметров состояния рабочего тела в узловых точках цикла ГТД.

Точка 1. Процесс 0-1 - адиабатное сжатие воздуха в диффузоре.

Точка 2. Процесс 1-2 - адиабатное сжатие воздуха в компрессоре.

Точка 3. Процесс 2-3 - изобарный подвод тепла в камере сгорания.

Степень повышения температуры:                                                      (6.6)

Точка 4. Процесс 3-4 - адиабатное расширение продуктов сгорания в турбине.

Точка 5. Процесс 4-5 - адиабатное расширение в реактивном сопле двигателя до давления окружающей среды .


  1.  Расчёт калорических величин цикла ГТД.
    1.  Изменение внутренней энергии, энтальпии и энтропии в процессах цикла.

Определяется внутренняя энергия в процессе.

Определяется энтальпия.

Определяется энтропия.

  1.  Расчёт теплоты процессов и тепла за цикл.

  1.  Расчёт удельной работы процессов и за цикл.

Определяется работа сжатия газа в диффузоре:

Определяется работа сжатия газа в компрессоре:

Определяется работа газа в турбине:

Определяется реактивного сопла:

Определяется работа цикла:

Результаты расчетов  приведены в таблице 6.

Таблица 6 - Основные параметры состояния рабочего тела в узловых точках цикла, изменение калорических параметров в процессах и за весь цикл идеального ГТД

Значения

Точки

Для

цикла

0

1

2

3

4

5

pi , Па

26500

152265,9

502644,96

502644,96

310041,3

26500

___

i , м 3/кг

2,434

0,698

0,299

0,686

0,971

5,7

___

Тi , К

223,3

368

520,3

1200

1047,7

526,42

___

Значения

Процесс

Для

цикла

0-1

1-2

2-3

3-4

4-5

5-0

u , Дж/кг

105385,01

110920,09

498702,69

-111744,03

-382468,35

-220762,29

33,12

h , Дж/кг

147188,84

154919,56

694034,87

-155512

-532273,8

-308333,66

23,81

    s,

Дж/кгK

0

0

841,35

0

0

-872,33

-30,98

qi , Дж/кг

0

0

687785,8

0

0

308333,7

379452,1

li , Дж/кг

-147188,84

-154919,56

0

155512

532273,8

0

385677,4


  1.   Расчёт параметров состояния рабочего тела в промежуточных точках процессов сжатия и расширения.
    1.  Процессы, изображаемые в  PV координатах.

Определение значений параметров P-V в промежуточных точках процессов 1-2, 3-4 и 4-5 позволит построить достаточно точные графики. Поскольку процессы 1-2 и 3-4 адиабатные, то для любой пары точек на них справедливы соотношения:

; ; ; .

Задаваясь значениями параметров , , ,  и используя известные величины p1 , p4 , p5 , определяются неизвестные pa , pb , pc , pd .

Расчетные значения промежуточных точек процессов откладываются на графике P-V и через них проводится кривая процесса (рис. 2 п.9). Значения точек сводятся в таблицу 7.

  1.  Процессы, изображаемые в TS координатах.

Полученные изменения энтропии откладываются в принятом масштабе на T-S диаграмме и по выбранным значениям Т определяются координаты промежуточных точек процесса, через которые проводится плавная кривая (рис. 3). Значения точек также сводятся в таблицу 7.

Таблица 7 - Параметры состояния рабочего тела в промежуточных точках процессов и изменение энтропии

Значения

Точки

a

b

c

d

p, Па

204706,87

298073,25

85362,5

41132,2

v, м 3/кг

0,565

0,432

2,38

3,79

T, K

747

973

425,4

324

Значения

Процесс

2-a 1

2-b 1

0-c 1

0-d 1

s, Дж/кгК

368

637,7

658

381

Расчет для процессов, изображаемых в p-v координатах.

    Рисунок 4 - Рабочая диаграмма цикла ГТД в p-v координатах

График используется для оценки равенства работы в идеальном цикле lрасч =lграф , найденных ранее расчетным путем и планиметрированием площади цикла.

где Sц - площадь цикла, найденная с помощью программы Компас-3D V9,

l - масштаб цикла.

Определяется погрешность:

Расчет для процессов, изображаемых в T-S координатах

Рисунок 5 - Тепловая диаграмма цикла ГТД в T-s координатах

График используется для оценки равенства тепла в идеальном цикле qрасч =qграф , найденных ранее расчетным путем и планиметрированием площади цикла.

где Sц - площадь цикла, найденная с помощью программы Компас-3D V9,

q - масштаб цикла.

Определяется погрешность:

  1.  Расчёт энергетических характеристик ГТД.

Определяется скорость набегающего потока:

Определяется скорость истечения рабочего тела из сопла двигателя:

Определяется удельная тяга двигателя:

Определяется секундный расход двигателя:

Определяется масса двигателя:

Определяется масса топлива, сгорающего в 1 кг воздуха:

Определяется суммарная масса топлива за время полета:

Определяется термический коэффициент полезного действия ГТД:

Результаты вычислений приведены в таблице 8.

Таблица 8 - Энергетические характеристики идеального ГТД

α

3,3011

4,28

385677,84

498,42

10,03

129,05

1119,348

56,08

  1.  Заключение

В данной работе был произведен расчет термодинамических параметров газотурбинного двигателя для заданного режима полета.

Был построен рабочий цикл ГТД в P-V и Т-S координатах.

Работа цикла была определена двумя методами - аналитическим и графическим, и был произведен подсчет погрешности.

.


4. Список использованных источников.

1. Мухачев Г.А., Щукин В.Е. Термодинамика и теплопередача. М.: Вьисш. шк., 1991. - 400 с.

2. Кирилин В.А., Сычев В.В., Шейндлин А.Е. Техническая термодинамика. М.: Энергоатомиздат, 1983. - 416 с.

3. Сборник задач по технической термодинамике и теплопередаче/ Под ред. Б.Н. Юдаева. М.: Высш. шк., 1968. - 372 с.

4. Требования к оформлению учебных текстовых документов: Метод. указания/ Сост. В.Н. Белозерцев, В.В. Бирюк, А.П.Толстоногов/ Куйбышев. авиац. ин-т. Куйбышев, 1988. - 29 с.

5. Белозерцев В.Н, Бирюк В.В., Толстоногов А.П. Методические указания по оформлению пояснительной записки к курсовой работе (проекту)/ Куйбышев. авиац. ин-т. Куйбышев, 1987. -16 с.

6. Меркулов А.П. Техническая термодинамика: Конспект лекций/ Куйбышев. авиац. ин-т. Куйбышев, 1990. - 235 с.

7. Толстоногов А.П. Техническая термодинамика: Конспект лекций/ Куйбышев. авиац. ин.-т. Куйбышев, 1990. - 100 с.





 

А также другие работы, которые могут Вас заинтересовать

41449. EЛEKTPOЛIЗ, ЙОГО СУТЬ ТА ЗНАЧЕННЯ 1012 KB
  Суть електролізу Особливості електролізу розплавів та розчинів. Практичне значення електролізу. Суть електролізу Особливості електролізу розплавів та розчинів. : Закони електролізу вперше були сформульовані видатним англійським фізиком М.
41450. ВЛАСТИВОСТІ ГАЛОГЕНІВ. ВОДНЕВІ СПОЛУКИ ГАЛОГЕНІВ 851.5 KB
  Добування і властивості хлору. На відміну від Хлору Брому Йоду й Астату Флуор в усіх своїх сполуках виявляє ступінь окиснення тільки З електронних структур видно що в атомах Хлору Брому Йоду й Астату в зовнішньому електронному шарі є вакантні dорбіталі. πЗв'язок помітно зміцнює молекулу і тому енергія дисоціації молекули хлору СІ2 239кДж моль значно більша ніж молекули фтору F2 1588 кДж моль.
41451. ОКСИГЕНОВМІСНІ СПОЛУКИ ГАЛОГЕНІВ 837 KB
  Оксигеновмiсні сполуки хлору їх особливості.Оксигеновмiсні сполуки хлору їх особливості. Непрямим способом добуто ряд сполук Хлору з Оксигеном але всі вони нестійкі. За температури 25С порівняно стійкими є такі оксигеновмісні сполуки Хлору: СІ2О СlO2 Сl2О6 Сl2O7.
41452. СІРКА. КИСНЕВІ ТА ВОДНЕВІ СПОЛУКИ СІРКИ 877.5 KB
  Оскільки атом Оксигену містить тільки два неспарені електрони він може лише двояко сполучатись у молекули: О О і О О О й утворювати тільки дві алотропні видозміни: кисень та озон.8 Полоній Po 6s26p46d0 0137 843 254 Оксиген та кисень. Кисень проста речовина утворена Оксигеном міститься в атмосферному повітрі у зв'язаному стані Оксиген входить до складу води кварцу силікатів алюмосилікатів сполук тваринного і рослинного походження. Вперше кисень у чистому вигляді добув шведський хімік К.
41453. СІРЧАНА КИСЛОТА, ЇЇ ВЛАСТИВОСТІ, ОДЕРЖАННЯ. СУЛЬФІТИ, СУЛЬФАТИ 764.5 KB
  Biдoмo кiльк cпoлyк Cyльфypy з Oкcигeнoм. Пpктичнe знчeння мють двi з ниx: oкcид cyльфypyIV т oкcид cyльфypyVI. Oкcид cyльфypyIV дoбyвють cплювнням npocтoї peчoвини cipки бo виплювнням пipитy. Oкcид cyльфypylV yтвopюєтьcя ткoж пiд чc пepeбiгy дeякиx мeтлypгiйниx пpoцeciв пiд чc cплювння км'янoro вyгiлля дo cклдy якoгo звжди вxoдить cipк.
41454. НЕМЕТАЛИ V ГРУПИ. АЗОТ. ВОДНЕВІ СПОЛУКИ АЗОТА 672 KB
  Hiтpиди 5eлeмeнтiв I т II гpyп пepioдичнoї cиcтeми кpиcтлiчнi peчoвини дocить ктивнi cпoлyки; вoни лeгкo poзклдютьcя вoдoю з yтвopeнням лyгy й мiкy: Hiтpиди seлeмeнтiв мeтлiчнi cпoлyки. Peгyючи з вoднeм y pзi пpoпycкння eлeктpичнoї icкpи зoт yтвopює дeякy кiлькicть мiкy: Цeй cпociб дoбyвння мiкy бyв зпpoпoнoвний нiмeцьким xiмiкoм Ф. Згiднo з пpинципoм лe Штeльє для yтвopeння мiкy нйcпpиятливiшими бyдyть виcoкий тиcк i низьк тeмпepтyp. Ocкiльки з низькиx тeмпepтyp peкцiя вiдбyвєтьcя пoвiльнo тo для пpиcкopeння пpoцecy cинтeз мiкy вeдyть...
41455. ОKCИГEHOBMICHI CПOЛУKИ HITPOГEHУ 1.08 MB
  Bci oкcиди нiтpoгeнy з виняткoм N2O дyжe oтpyйнi. Oкcид нiтpoгeнyI дoбyвють нгpiвнням нiтpтy мoнiю: Moлeкyл N2O мє лiнiйнy бyдoвy дoвжин зв'язкy dNH=0113 нм dNO= 0118 нм; N2O нecoлeтвopний oкcид тepмoдинмiчнo нecтiик cпoлyк Gf0 = 104 кДж мoль. Oкcид нiтpoгeнyI бeзбpвний гз coлoдкyвтий н cмк; мє cлбкий пpиeмний зпx тeмпepтypy плвлeння 91C тeмпepтypy кипiння 88 C Bдиxння вeликoї кiлькocтi N2O викликє cтн пoдiбний дo cпянiння звiдcи йoгo iнш нзв вeceлильний гз. N2О пoгнo poзчиняєтьcя y вoдi в 1 oб'ємi H2О з...
41456. ФOCФOP. КИСНЕВІ ТА ВОДНЕВІ СПОЛУКИ ФОСФОРУ 623.5 KB
  Ocнoвними мiнepлми Фocфopy є фocфopит C3PО42 т птит щo мicтить кpiм C3PО42 щe й CF2 i CCl2. Beлик кiлькicть Фocфopy мicтитьcя в кicткx xpeбeтниx твpин в ocнoвнoмy y виглядi cпoлyк: ЗС3PО42 COH2 т ЗС3PО42 CCO3 H2О. B opгнiзмi людини мicтитьcя близькo 15 кг фocфopy. Biдoмo кiльк лoтpoпниx видoзмiн Фocфopy.