4868

Указатели. Адресная арифметика. Ссылки

Лекция

Информатика, кибернетика и программирование

Указатели. Адресная арифметика. Ссылки. Указатели – особый тип данных. Указатель хранит адрес, по которому в памяти располагается некоторый объект (переменная, массив, функция). Можно упрощенно представить память компьютера в виде массива после...

Русский

2012-11-28

41 KB

8 чел.

Указатели. Адресная арифметика. Ссылки.

Указатели – особый тип данных. Указатель хранит адрес, по которому в памяти располагается некоторый объект (переменная, массив, функция). Можно упрощенно представить память компьютера в виде массива последовательно пронумерованных (адресованных) ячеек (байт). Любой переменной соответствует определенный участок памяти, представляющий собой непрерывную «цепочку» байт необходимого размера. Размер зависит от типа переменной. Например, переменная типа char всегда занимает ровно 1 байт, а переменная типа int может занимать 2 и больше байта (в зависимости от архитектуры компьютера и используемого компилятора). Соответственно, зная адрес начала участка памяти, выделенного для некоторой переменной, а также её тип, можно обеспечить чтение и запись этой переменной косвенным образом, через её адрес. Возможность такой косвенной работы с переменными (а также с массивами и функциями) осуществляется с помощью указателей.

Объявления указателя на переменную выглядит так:

 тип_переменной * имя_указателя;

Адрес переменной можно получить с помощью оператора &, в следующем примере указатель p инициализируется адресом переменной i:

int i = 10; 

int * p = & i;

Указателю любого типа можно присвоить значение 0, что означает, что указатель не адресует никакой переменной.

Косвенное обращение к переменной, адрес которой хранит указатель, осуществляется с помощью оператора разыменовывания (dereferencing) *, в приведенном ниже примере значение переменной d изменяется косвенным образом через указатель pd:

double d = 10;

 double * pd = & d;

*pd = 20;

std::cout << "d: " << d << std::endl;

Попытка косвенного обращения через указатель, имеющий нулевое значение, приведет к ошибке времени выполнения (run-time).

Указатели одного типа можно присваивать друг другу, при этом оба указателя будут ссылаться на один и тот же объект:

 

 float f = 1.0;

 float * pf1 = & f; // pf1 хранит адрес переменной f

 float * pf2 = pf1; // pf2 тоже хранит адрес переменной f

* pf2 = 2.0;       // теперь f == 2.0

 float g = * pf1;   // теперь g == f (2.0)

Указатель не может адресовать объект другого типа. Такие операции запрещены, потому что интерпретация компилятором объектов, адресуемых указателем, зависит от типа указателя:

 

 int i = 10;

   float * pf = & i; // ошибка

Иногда возникают ситуации, когда нужно только само значение адреса, а не объект, на который он указывает (например, нужно сравнить адрес с каким-то другим). Для этого существует специальный указатель void, который может адресовать любой тип данных. Однако, поскольку тип объекта, адресуемого таким указателем, неизвестен, никакие манипуляции с объектом через этот указатель не допустимы. Все, что можно сделать – присвоить его значение другому указателю или сравнить его с какой-либо адресной величиной.

  int i = 10;

  float f = 5.0;

  void * pv = & i; // допустимо

  pv = & f; // допустимо

  *p v = 1; // ошибка!

Применение оператора взятия адреса & к объекту типа int возвращает результат типа int*. Если ту же операцию применить к объекту типа int * (указатель на int), получим указатель на указатель на int, т.е. int**. int** – это адрес переменной, которая содержит адрес переменной типа int. В следующем примере, разыменовав ppi, мы получим переменную типа int*, содержащую адрес переменной i. Чтобы получить значение переменной i, операцию разыменовывания к ppi надо применить дважды:

 

      int i = 10;

  int * pi1 = & i; // pi1 получает адрес i

  int ** ppi = & pi1; // ppi получает адрес pi1

  int * pi2 = * ppi;  // pi2 получает значение pi1 косвенно,

                      // через указатель ppi. Фактически,

                      // теперь pi2 тоже содержит адрес i

  

  int j = **ppi; // j получает значение i косвенно,

                 // используя двойную адресацию

Адресная арифметика.

 Указатели могут быть использованы в арифметических выражениях. К указателю можно прибавлять или вычитать целое значение. Прибавление к указателю 1 увеличивает хранящееся в нем значение адреса на размер области памяти, используемый переменной соответствующего типа. Это позволяет использовать указатели при работе с массивами: поскольку в массивах все элементы располагаются в памяти последовательно, прибавление к указателю 1 означает «перевод» его на следующий элемент массива:

      int A[10];

  int * it = & A[0]; // Указатель на начало массива

  int * end = & A[10]; // Указатель на конец массива,

                       // фактически, это адрес участка памяти,

                       // расположенного сразу после последнего

                       // элемента массива

  while ( it != end ) // пока не дошли до конца массива

  {

     *it = rand(); // записываем в текущий элемент случайное число

     ++it; // увеличиваем указатель на 1,

           // т.е. переходим к следующему элементу массива

  }

 Ссылки.

Ссылочный тип служит для задания переменной дополнительного имени (синонима). Ссылка позволяет косвенно манипулировать переменной, аналогично указателю. Чаще всего ссылки используются в качестве формальных параметров функций. Ссылочный тип описывается указанием оператора взятия адреса & перед именем переменной. Ссылка обязательно должна быть инициализирована. Определив ссылку, невозможно изменить её так, чтобы работать с другим объектом.

  int i = 10 , j = 5;

  int & ri = i; // ri - синоним переменной i

  int & ri2; // Ошибка - ссылка не инициализирована

Все операции со ссылкой относятся к адресуемой ей переменной, в том числе присваивание и взятие адреса:

  ri = j; // i получает значение j через ссылку ri

  ri++; // i увеличивается на 1 через ссылку ri

     int * pi = & ri; // указатель pi получает значение

                   // адреса i через ссылку ri


 

А также другие работы, которые могут Вас заинтересовать

23948. Художественные особенности, композиция, структура «Одиссеи» 16.88 KB
  Художественные особенности композиция структура Одиссеи В плане фабулы мифологической последовательности событий Одиссея соответствует Илиаде. На первый план выходит судьба Одиссея – прославление ума и силы воли. Одиссея соответствует мифологии позднего героизма. Посвящена последним 40 дням возвращения Одиссея на родину.
23949. Одиссея 18.04 KB
  Только один Одиссей 10лет странствует по чужим морям и землям и никак не может вернуться так как его преследует своим гневом Посейдон. За него вступается Афина и говорит что это несправедливо что все герои уже давно вернулись домой а обеспечивший победу Одиссей никак не может вернуться к своей жене Пенелопе и сыну Телемаху. Зевс принимает двоякое решение: Афину он отправляет на родину к Одиссею чтобы та успокоила и подбодрила жену и сына героя а Гермеса он оправляет на ов Калипсо где последние семь лет живет Одиссей как бы в плену. Сам...
23951. Дидактический эпос. Гесиод 16.65 KB
  Изобразительный талант Гомера. В этом плане уместно говорить об описании роскоши и всяческого обилия у Гомера: роскошных одеяний о жизни полной наслаждений Геры Калипсо и Кирки. Обычно выдвигается на первый план тенденция Гомера к изображению деталей. Однако у Гомера гораздо чаще тенденция либо указывать на принадлежность вещей какомунибудь лицу либо рассказывать целую историю этой вещи как в случае со скипетром Агамемнона луком Одиссея ясеневым копьем Ахилла кобылой Эфой и т.