48749

Расчет структуры переменных электромагнитных полей в волноводе

Контрольная

Физика

Для заданного типа волны с начальной амплитудой поля Em=5кВ см распространяющейся в прямоугольном волноводе сечением а x в получить аналитические выражения продольной и поперечных компонент полей в комплексной форме записи и для мгновенных значений.1 Распространяющиеся в волноводе электромагнитные волны являются волнами бегущими вдоль оси волновода вдоль оси z и стоячими в двух остальных направлениях. Стоячие волны в направлениях x и y образуются вследствие многократных отражений волн от стенок волновода. Другими словами для Hволны...

Русский

2013-12-29

416 KB

4 чел.

2. Расчет структуры переменных электромагнитных полей в волноводе

Общее задание.

Для заданного типа волны с начальной амплитудой поля Em=5кВ/см, распространяющейся в прямоугольном волноводе сечением а x в получить аналитические выражения продольной и поперечных компонент полей в комплексной форме записи и для мгновенных значений. Для численных параметров задачи построить эпюры полей по осям X, Y, Z, а также картину распределения полей в плоскостях XY и XZ. Рассчитать заданные характеристики полей и построить их зависимости от частоты. Во всех случаях считаем, что параметр =1.

Параметры задачи

Волна H41, a x b = 23 x 10 мм; = 9 мм, диэлектрическая проницаемость =2.2. Рассчитать ,ZЭ.

Решение

Процесс распространения электромагнитных волн в полости прямоугольного волновода рассматриваем, полагая, что стенки волновода выполнены из сверхпроводящего материала ( = ). При этом условии напряженность электрического поля на стенках волновода будет равна нулю (плотность тока на стенках волновода = E есть величина конечная).

Оси координат расположим в соответствии с рис. 2.1.    Рисунок 2.1.

Полость волновода заполнена диэлектриком, электрическая проницаемость которого . Длина волновода в направлении оси z не ограничена. Электромагнитное поле в волноводе описывается уравнением:

    (2.1)

Распространяющиеся в волноводе электромагнитные волны являются волнами, бегущими вдоль оси волновода ( вдоль оси z ) и стоячими в двух остальных направлениях. Стоячие волны в направлениях x и y образуются вследствие многократных отражений волн от стенок волновода. Структура H-волн такова, что составляющую вдоль оси волновода имеет только напряженность магнитного поля, а напряженность электрического поля расположена в плоскостях, перпендикулярных оси волновода. Другими словами, для H-волны

  (2.1’)

Если подставить (2.1’) в уравнение (2.1), то последнее разобьется на три уравнения для проекций. Для проекции на ось z будем иметь следующее уравнение:

,

где  - волновое число, -длина волны в неограниченном пространстве, - круговая частота, a -, a абсолютные электрическая и магнитная проницаемости

Упростим выражение (2.3) путем подстановки решения вида

   (2.2)

где  - продольный коэффициент распространения волны в волноводе, - длина волны в волноводе. Сокращая на множитель , имеем

     (2.3)

     (2.4)

Подставим (2.4) в (2.3)

    (2.5)

Сумма двух независимых переменных в левой части уравнения может равняться постоянному числу только в том случае, если каждая из них есть постоянное число. Переходя от частных производных к обыкновенным, получаем:

     (2.6)

Здесь через kx и ky обозначены постоянные разделения (поперечные волновые числа).

Рассмотрим уравнение типа

.

Умножим его на  и после небольших преобразований получим

.

Из последнего равенства видно, что не зависит от t. Так как эта величина есть суммой двух квадратов, то она положительна и ёё можно представить в виде

,

где q0-постоянная. Чтобы выполнить интегрирование разделим переменные:

.

Отсюда

,

Или

q=q0cos(kt+b).

Здесь q0 и b – постоянные интегрирования.

По аналогии получаем решения уравнений (2.6:

 

Исходя из соотношения (2.4), имеем выражение для амплитуды (волновой множитель опускается) продольной составляющей магнитного поля:

   (2.7) ,

где - начальная комплексная амплитуда; kx, ky, x, y - постоянные интегрирования

Для нахождения поперечных компонент поля воспользуемся уравнениями Максвелла в проекциях на оси координат при условии Ez=0 :

  (2.8)

Поскольку характер изменения полей по оси z задается выражением (2.2), то в (2.8) примем, что . Рассматривая затем первое и пятое уравнения как систему для Ех и Нy, а второе и четвертое - для Еу и Нх , находим данные параметры

Первая система:

Вторая система:

Получаем следующие выражения для поперечных составляющих полей через продольные:

(2.9)

 

Подставляя в (2.9) значение Hz, получаем выражения для поперечных составляющих поля:

Из (2.7) следует:

  (2.10)

В силу того, что для Н-волны Еz=0 и поскольку волны являются бегущими вдоль оси z, то ,и из уравнений 4, 5 системы (2.8) следует, что

    (2.10’)

На внутренних поверхностях стенок волновода напряженность электрического поля равна нулю. Следовательно, Ех=0 при у=0 и y=b, а Ey=0 при x=0 и x=a. Если это учесть, то из уравнений (2.10’) имеем:

Так как , то из уравнений 1,2 системы(2.8) находим:

  (2.12)

Подставляем производные выражения (2.7) в (2.12):

 

где m,n = 0,1,2,…

Подставляем в (2.10) найденные константы интегрирования:

    (2.11)

- эквивалентное сопротивление волновода для H-волны

- волновое сопротивление неограниченной среды; fk-критическая частота

Учитывая, что  а также то, что sin и cos - периодические функции, из (2.11) получаем:

 (2.12)

Аналитические выражения для составляющих поля волны H41 получаем из (2.12) при m=4, n=1,

Составляющие поля волны H41:

Для восстановления действительных значений, необходимо компоненты полей домножить на опущенный ранее волновой множитель , перейти по формуле Эйлера к тригонометрической форме записи и взять действительную часть полученного выражения.

   (2.13)

Фазовая и групповая скорости в общем случае определяются следующими соотношениями [2]:

где  - скорость электромагнитной волны в неограниченной среде с параметрами a, a. (В данном случае v=2·108).


 

А также другие работы, которые могут Вас заинтересовать

23029. Задачі ідентифікації лінійних алгебраїчних, інтегральних та функціональних перетворень 487 KB
  Постановка та план розвязання задачі. Далі розвязки ідентифікаційних задач 16.3 отримаємо із розвязку допоміжних задач 16. Розглянемо розвязок задачі 16.
23030. Проблеми моделювання динаміки систем з розподіленими параметрами 1.64 MB
  4 і модель ця адекватно описує динаміку фізикотехнічного обєкту процесу то можна ставити і розвязувати: Прямі задачі динаміки визначення векторфункції стану ys при заданих зовнішньодинамічних факторах ; Обернені задачі динаміки визначення векторфункцій які б згідно певного критерію дозволяли отримувати задану картину змін векторфункції ys або наближатися до неї.4 побудовані апробовані практикою а відповідні математичні теорії дозволяють розвязувати як прямі так і обернені задачі динаміки таких систем....
23031. Побудова матричної функції Гріна та інтегральної моделі динаміки систем з розподіленими параметрами в необмеженій просторово-часовій області 249.5 KB
  Функція Гріна динаміки систем з розподіленими параметрами в необмежених просторовочасових областях.10 а також з того що шукана матрична функція Gss' є розвязком рівняння 1.1 де визначені вище матричні диференціальні оператори та матрична функція одиничного джерела. А це означає що матрична функція відповідає фізичному змісту задачі а розвязок її дійсно представляється співвідношенням 1.
23032. Дискретний варіант побудови та дослідження загального розв’язку задачі моделювання динаміки систем з розподіленими параметрами 586 KB
  Псевдообернені матриці та проблеми побудови загального розвязку системи лінійних алгебраїчних рівнянь. З цією метою виділимо в матриці C r лінійно незалежних стовпців. Враховуючи що всякий стовпець матриці C може бути розкладений за системою векторів як за базисом матрицю C подамо у вигляді де вектор коефіцієнтів розкладу стовпця матриці С за базисом .10 ранг основної матриці дорівнює рангу розширеної.
23033. Моделювання дискретизованих початково-крайових 244 KB
  Постановка задачі та проблеми її розвязання.4 в розвязку 1.23 вектора векторфункції та матричної функції проблему розвязання задачі 4.6 в залежності від співвідношень між та може мати точний розвязок або визначене згідно 4.
23034. Моделювання неперервної початково-крайової задачі динаміки систем з розподіленими параметрами 355.5 KB
  Моделювання неперервної початковокрайової задачі динаміки систем з розподіленими параметрами 5. Постановка задачі та проблеми її розвязання. Розглянутий вище варіант постановки та розвязання проблеми моделювання початковокрайової задачі динаміки системи 1.5 Для того щоб методику розвязання дискретизованої задачі моделювання динаміки розглядуваної системи розвинуту в рамках лекції 3 успішно узагальнену далі лекція 4 на задачі моделювання дискретизованих початковокрайових умов неперервними функціями та поширити на задачу 5.
23035. Моделювання динамічних систем з розподіленими параметрами при наявності спостережень за ними 563 KB
  Відомі функції невідомі 6. Відомі функції невідомі 6. Відомі функції невідомі 6. Відомі функції невідомі 6.
23036. Задачі оптимізації структури лінійних динамічних систем з розподіленими параметрами 289.5 KB
  Задачі оптимізації структури лінійних динамічних систем з розподіленими параметрами 7. Розглянуті вище задачі моделювання початковокрайових умов див. Розглянемо варіант розвязання задачі моделювання коли розвязок її знаходиться шляхом обернення системи інтегральних рівнянь 7.14 помилки розвязання задачі моделювання 7.
23037. Дослідження та оптимізація структури дискретизованих динамічних систем 335.5 KB
  вказувалося що структура матриці С та векторів визначається вибором точок розміщення спостерігачів та керувачів системи проблеми оптимального розміщення яких будуть розвязані якщо будуть знайдені явні залежності матриці від елементів множин координат спостерігачів та координат керувачів. Будуть побудовані аналітичні залежності елементів матриці від довільного елемента множини та елемента множини а також формули диференціювання матриці по цих елементах. В процесі розвязання цієї проблеми будуть побудовані формули...