48750

Расчет структуры полей проводящего шара в диэлектрической среде

Курсовая

Физика

Цель работы: расчет структуры полей проводящего шара в диэлектрической среде а также в волноводе для приведенных в задании параметров. Метод исследования : метод разделения переменных при интегрировании дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей с последующим построением на ЭВМ структуры этих полей. Для заданной геометрии и параметров среды получены аналитические выражения значений потенциалов и напряженностей полей диэлектрического шара в диэлектрической среде. В...

Русский

2013-12-14

103.5 KB

3 чел.

РЕФЕРАТ

   Объекты исследования : диэлектрический  шар в диэлектри-ческой среде , прямоугольный волновод с волной Н42.

   Цель работы : расчет структуры полей проводящего шара в диэлектрической среде, а также в волноводе для приведенных в задании параметров. Закрепить навыки основ программирования и работы на персональных компьютерах.

   Метод исследования : метод разделения переменных при интегрировании  дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей с последующим построением на ЭВМ структуры этих полей.

   Для заданной геометрии и параметров среды получены аналитические выражения значений потенциалов и напряженностей полей диэлектрического шара в диэлектрической среде. В случае волны Н42, распространяющейся в прямоугольном волноводе сечением 35 на 15 мм, путем интегрирования волнового уравнения и использования уравнений Максвелла получены соотношения, описывающие поведение поперечных и продольных компонент полей, а также выражения для расчета Λ в волноводе и эквивалентного сопротивления. Путем применения ЭВМ построены  графики структур статических полей для шара и переменных полей для  волновода.

    Ключевые слова: ВОЛНА, КОЭФФИЦИЕНТ РАСПРОСТРАНЕНИЯ, КРИТИЧЕСКАЯ ЧАСТОТА, ФАЗОВАЯ И ГРУПОВАЯ СКОРОСТИ, ПОЛЕ

МЕТОДИКА РАСЧЕТА.

1. Расчет  структуры  осесимметричных  стационарных

электромагнитных  полей.

Общее  задание.

Осесимметричное тело радиуса R находится в однородном внешнем электрическом поле E0, перпендикулярном к его оси. Заданы  характеристики окружающей среды. Получить аналитические выражения для потенциалов и  и полей Ei и Ee,соответственно внутри и вне тела. Для заданных численных  значений параметров задачи построить семейство эквипотенциальных линий (10 линий) в плоскости, перпендикулярной оси симметрии тела.

Найти вектор электрической индукции D вточке M .

Параметры  задачи

Диэлектрический шар в вакууме,

R = 6 см, E0 = 20 кВ/м,  = 6, = 1

Координаты точки M: r =5 см = 0,05 м,    =30

Решение

Решение проводится в цилиндрических координатах, связанных с центром шара, r - радиус-вектор точки наблюдения, ось x направлена вдоль приложенного электрического поля (рис. 1.1).

                            

При таком расположении шара, потенциал поля не будет зависеть от координаты z. Учитывая это запишем уравнение Лапласса:

                                 (1. 1)

Как внутри, так и вне шара сторонних зарядов нет, поэтому следует решать уравнение Лапласа  с соответствующими граничными усло-виями на поверхности r = R.

   Решим уравнение (1.1)  методом разделения переменных, в соответствии с которым решение будем искать в виде произведения двух функций, каждая из которых зависит только от одной координаты:

                                                                     (1. 2)

Полное решение будет иметь вид:

  •  для внутреннёй области

;                                (1. 3)

  •  для внешней области

.                                (1. 4)

Для определения постоянных интегрирования необходимо учесть не только граничные условия на поверхности шара, но и поведение потенциала на бесконечности. Потенциал φ на бесконечности в этом случае имеет вид:

.                                        (1. 5)

Так как потенциал в поле точечного заряда изменяется обратно пропорционально r , то С/r  есть составляющая потенциала от суммарного заряда шара, рассматриваемого как точечный заряд. По условию суммарный заряд шара равен нулю (С= 0), и следовательно (1. 4) и (1. 5) имеют вид:

.                                   (1. 6)

Выражение потенциала φi для внутренней области должно давать конечное значение потенциала для точек внутри шара. А это  возможно лишь тогда, когда С= 0 и С4і = 0. Постоянная С2і = С= φ0 (для внешней области). Таким образом для внутренней области:

  .                                       (1. 7)

Для нахождения неизвестных постоянных С4e  и   С3і  воспользуемся граничними условиями φi = φe при r = R, следовательно,

+.                                         (1. 8)

Dni = Dne при  r = R, следовательно:

-.                                  (1. 9)

Откуда получаем, что:

.                                   (1. 10)

Решение уравнений (1. 8), (1. 10) дают нам следующие выражения:

,   .                    (1. 11)

Подставив найденные постоянные, получим потенциалы внутренней и внешней областей:

,              (1. 12)

.                       (1. 13)

Напряжённости поля в шаре и вне шара будут равны:

,                             (1. 14)

Так как  , и , то подставив их в формулу для имеем:

                      

.  (1. 15)

Запишем уравнение эквипотенциальных линий в плоскости (xoz), заданное в сферических координатах:            

.                                      (1. 16)

где φn = const - фиксированное значение потенциала, выбранное для построения эквипотенциали с индексами  n = 1, 2, 3,….  Уравнения эквипотенциальных линий внутри и вне шара следует из формул (1. 12), (1. 13), (1.16):

.                  (1. 17)

Плотность зарядов σ поверхности проводника равна:

2.  Расчет структуры     переменных    электромагнитных      полей    в  волноводе.

 Общее  задание.

    Для заданного типа волны с начальной амплитудой поля =5 кВ/см, распространяющейся в прямоугольном волноводе сечением получить аналитические выражения продольной и поперечных компонент полей в комплексной форме записи и для мгновенных значений. Для численных параметров задачи построить эпюры полей по осям x, y, z, а также картину распределения полей в плоскостях xy и xz. Рассчитать заданные характеристики полей и  построить их зависимости  от частоты. Во всех случаях считаем, что  параметр μ = 1.

Параметры  задачи

Волна H!!!!!!!!!!!!!!!!!!!! ,  a  b = 40 x 20 мм;   = 15 мм,     диэлектрическая проницаемость  = 2.2.        Рассчитать !!!!!!!!!!!!!!!!!!!!!!!!!! и Zэ.

Решение

Для начала нарисуем эскиз волновода  (рис. 2)

 

Полость волновода заполнена диэлектриком, электрическая проницаемость которого . Длина волновода в направлении оси z не ограничена. Процесс распространения электромагнитных волн в полости прямоугольного волновода рассматриваем, полагая, что стенки волновода выполнены из сверхпроводящего материала ( = ). При этом условии напряженность электрического поля на стенках волновода


 

А также другие работы, которые могут Вас заинтересовать

21290. Діаграма станів 479.5 KB
  Діаграма станів Вступ Розглянута в попередній лекції діаграма класів є логічний модель статичного подання модельованої системи. Справа в тому що характеристика станів системи не залежить або слабко залежить від логічної структури зафіксованої в діаграмі класів. Тому при розгляді станів системи припадає на час відволіктися від особливостей її об'єктної структури і мислити зовсім іншими категоріями які утворюють динамічний контекст поведінки модельованої системи. Тому при побудові діаграм станів необхідно використовувати спеціальні...
21291. Діаграма діяльності 625.5 KB
  Діаграма діяльності Вступ При моделюванні поведінки проектованої або аналізованої системи виникає необхідність не тільки уявити процес зміни її станів але і деталізувати особливості алгоритмічної та логічної реалізації виконуваних системою операцій. Для моделювання процесу виконання операцій в мові UML використовуються так звані діаграми діяльності. Застосовувана в них графічного багато в чому схожа на нотацію діаграми станів оскільки на діаграмах діяльності також присутні позначення станів і переходів. Кожен стан на діаграмі діяльності...
21292. Діаграма послідовності 571.5 KB
  Іншими словами хоча повідомлення і має інформаційний зміст воно набуває додаткове властивість надавати направлений вплив на свого одержувача. Повідомлення зображуються у вигляді горизонтальних стрілок з ім'ям повідомлення і також утворюють порядок за часом свого виникнення. Іншими словами повідомлення розташовані на діаграмі послідовності вище ініціюються раніше тих що розташовані нижче. Графічне зображення актора рекурсії та рефлексивного повідомлення на діаграмі послідовності 2.
21293. Методологія обєктно-орієнтованого аналізу і проектування ПЗ. Мова UML 72.5 KB
  Мова UML Зіставлення і взаємозв'язок структурного та об'єктноорієнтованого підходів Граді Буч сформулював головне достоїнство об'єктноорієнтованого підходу ООП наступним чином: об'єктноорієнтовані системи більш відкриті і легше піддаються внесенню змін оскільки їх конструкція базується на стійких формах. Буч відзначив також ряд наступних переваг ООП: об'єктна декомпозиція дає можливість створювати програмні системи меншого розміру шляхом використання загальних механізмів що забезпечують необхідну економію виразних засобів. Системи...
21294. Структурний підхід до проектування інформаційних систем 477 KB
  Основними з цих принципів є наступні: принцип абстрагування полягає у виділенні істотних аспектів системи і відволікання від несуттєвих; принцип формалізації полягає в необхідності суворого методичного підходу до вирішення проблеми; принцип несуперечності полягає в обгрунтованості та узгодженості елементів; принцип структурування даних полягає в тому що дані повинні бути структуровані і ієрархічно організовані. Кожній групі засобів відповідають певні види моделей діаграм найбільш поширеними серед яких є наступні: SADT...
21295. Мета та завдання дисципліни 88.5 KB
  CASEтехнологія являє собою методологію проектування ІС а також набір інструментальних засобів що дозволяють в наочній формі моделювати предметну область аналізувати цю модель на всіх етапах розробки і супроводу ІС і розробляти програми відповідно до інформаційними потребами користувачів. Поняття моделі та моделювання Модель це об'єкт або опис об'єкта системи для заміщення однієї системи оригіналу іншою системою для кращого вивчення оригіналу або відтворення будьяких його властивостей. Слово модель лат. При моделюванні...
21296. Діаграма варіантів використання (use case diagram) 504 KB
  Діаграма варіантів використання use case diagram Вступ Візуальне моделювання в UML можна уявити як певний процес поуровневого спуску від найбільш обший і абстрактної концептуальної моделі вихідної системи до логічної а потім і до фізичної моделі відповідної програмної системи. Для досягнення цих цілей спочатку будується модель у формі так званої діаграми варіантів використання use case diagram яка описує функціональне призначення системи або іншими словами те що система буде робити в процесі свого функціонування. Діаграма...
21297. Життєвий цикл програмного забезпечення 1.58 MB
  Життєвий цикл програмного забезпечення Одним з базових понять методології проектування ІВ є поняття життєвого циклу її програмного забезпечення ЖЦ ПЗ. Структура ЖЦ ПЗ за стандартом ISO IEC базується на трьох групах процесів: основні процеси ЖЦ ПЗ придбання поставка розробка експлуатація супровід; допоміжні процеси які забезпечують виконання основних процесів документування управління конфігурацією атестація оцінка аудит рішення проблем; організаційні процеси управління проектами створення інфраструктури проекту...
21298. Моделювання за допомогою методу Баркера 243 KB
  З їх допомогою визначаються важливі для предметної області об'єкти сутності їх властивості атрибути і відношення один з одним зв'язки. Графічне зображення сутності Кожна сутність повинна мати унікальний ідентифікатор. Кожен екземпляр сутності повинен однозначно ідентифікуватися і відрізнятися від всіх інших примірників даного типу сутності. Одна і та ж інтерпретація не може застосовуватися до різних імен якщо тільки вони не є псевдонімами; володіє одним або декількома атрибутами які або належать сутності або успадковуються через...