4878

Сортировка внешних данных. Сортировка прямым слиянием

Лекция

Информатика, кибернетика и программирование

Сортировка внешних данных. Сортировка прямым слиянием. Сортировка слиянием основывается на том факте, что при наличии двух отсортированных последовательностей можно реализовать вычислительно эффективный способ их слияния в единую отсортированную пос...

Русский

2012-11-28

62 KB

22 чел.

Сортировка внешних данных. Сортировка прямым слиянием.

Сортировка слиянием основывается на том факте, что при наличии двух отсортированных последовательностей можно реализовать вычислительно эффективный способ их слияния в единую отсортированную последовательность. Поскольку последовательность из одного элемента можно считать уже отсортированной, суть сортировки слиянием можно обобщить так: исходная последовательность разбивается на одноэлементные «куски», а затем они постепенно сливаются.

Рассмотрим процедуру слияния двух отсортированных последовательностей A и B размера Na и Nb соответственно в новую последовательность C длины Na+Nb. Суть процедуры заключается в повторяющемся выборе элемента, наименьшего из двух имеющихся в началах исходных массивов, и переносе этого элемента в конец выходной последовательности:

/ Функция реализуеут слияние массивов A и B размеров

// sizeA и sizeB в выходной массив C

void merge( const double * A, int sizeA

         , const double * B, int sizeB

         , double * C

         )

{

  int a = 0, b = 0; // Индексы текущих элементов в массивах A и B

  while( a + b < sizeA + sizeB ) // пока остались элементы в массивах

  {

     if ( ( b >= sizeB ) || ( ( a < sizeA ) && ( A[a] <= B[b] ) ) )

     {

        // Копируем элемент из массива A

        C[ a + b ] = A[a];

        ++a;

     }

     else 

     {

        // Копируем элемент из массива B

        C[ a + b ] = B[b];

        ++b;

     }

  }

}

Таким образом, сортировку слиянием можно описать в виде алгоритма:

- разбиваем входной массив на пары и осуществляем слияние каждой пары, получая отсортированные блоки длины 2 (при нечетном количестве элементов для последнего элемента парного не будет). Заметим, что пару элементов легко отсортировать, просто обменяв их местами (при необходимости), не осуществляя «честное» слияние одиночных элементов;

- разбиваем имеющиеся отсортированные блоки на пары и выполняем слияние блоков в новые блоки большей длины;

- если число отсортированных блоков больше 1, переходим к предыдущему шагу.

// Функция сортирует массив A из size элементов

void mergeSort( double * A, int size )

{

   if ( size < 2 )

      return; // сортировать нечего

   if ( size == 2 ) // два элемента проще поменять местами,

   {                // чем делать слияние

       if( A[0] > A[1] )

       {

          double tmp = A[0];

          A[0] = A[1];

          A[1] = tmp;

       }

       return;

   }

   

   // Рекурсивно сортируем обе половины массива

   mergeSort( A         , size/2        );

   mergeSort( A + size/2, size - size/2 );

   double * B = new double[ size ]; // временный массив для слияния

   // Слияние половин

   merge( A, size/2

        , A + size/2, size - size/2

        , B);

   // Копируем результат слияния в исходный массив:

   for ( int i = 0; i < size; ++i )

      A[i] = B[i];

   delete[] B; // удаляем временный массив

}

Оценивая количество сравнений, необходимых для сортировки слиянием, нетрудно получить оценку сложности алгоритма в O( N * log N ) в худшем случае, что говорит о том что этот алгоритм очень эффективен, однако его существенным недостатком является необходимость выделения значительного количества дополнительной памяти.

Сортировка внешних данных.

Все рассматриваемые нами алгоритмы сортировок работали в предположении, что вся исходная последовательность целиком помещается в памяти компьютера, и мы можем без каких-либо существенных проблем обращаться к произвольным её элементам по индексу. Кроме того, рассмотренные алгоритмы имеют дело с упорядочиванием ключей, при этом подразумевается, что эти ключи могут быть связаны с некоторыми крупными блоками данных – записями. Во многих случаях длина такой записи существенно превосходит размер ключа, что может приводить к большим издержкам при обмене записей местами, в этом случае оценка эффективности алгоритма должна обязательно учитывать не только число сравнений, но и число обменов.

Иногда все данные можно разместить в виртуальной памяти (физически размещенной на дисках), однако, расходы на осуществление операций обмена между оперативной памятью и дисками могут быть существенными. Поскольку реализация этих операций осуществляется операционной системой, зачастую нет возможностей повлиять на их эффективность. В результате, непосредственное использование всех рассмотренных алгоритмов сортировки на больших объемах данных оказывается непрактичным.

В подобных случаях применим другой подход. Допустим, во внешнем файле имеется последовательность из M элементов, которую необходимо отсортировать. Будем считать, что в оперативной памяти можно выделить место для хранения массива из N элементов, причем N много меньше M. Кроме того, будем считать, что в нашем распоряжении есть 4 «временных» файла A, B, C, D.

 На первом шаге прочитаем N записей из исходного файла в оперативную память и отсортируем их с помощью любой подходящей «внутренней» сортировки. Этот набор из N отсортированных записей перепишем во временный файл A. Затем прочитаем следующие N записей из исходного файла, отсортируем и поместим в файл B. Этот процесс продолжается, пока не кончатся элементы в исходном файле, причем отсортированные блоки по N элементов будем записывать поочередно в файлы A и B:

 

псевдокод

CreateBlocks (N)

{

  // N - размер создаваемых блоков

  currentFile = A

  while ( не достигнут конец входного файла )

  {

     read N записей из входного файла

     sort N записей

     if ( currentFile == A )

        currentFile = B

     else

        currentFile = A

     write N записей в currentFile

  }

}

 Теперь у нас есть 2 файла A и В, содержащие отсортированные блоки по N элементов, однако о порядке элементов в любых двух различных блоках сказать ничего нельзя. Далее начинаем с чтения первых половинок первых двух блоков в файлах A и B, по N/2 элементов из каждого, так, чтобы всего в памяти оказалось не более N элементов. Теперь применим процедуру слияния к считанным половинкам блоков в файл C. Когда обработка одного из блоков будет завершена, конец второго блока перепишем в файл C. После того, как слияние первых двух отрезков из файлов A и B будет завершено, следующие два отрезка сливаются в файл D. Далее процесс слияния продолжается с попеременной записью слитых отрезков в файлы C и D. В конце этого шага получим два файла, разбитые на отсортированные блоки длины 2N. Затем процесс повторяется, причем блоки читаются из файлов C и D, а слитые блоки (длины 4N) записываются поочередно в файлы A и B. Ясно, что в конце концов отрезки сольются в одну отсортированную последовательность в одном из файлов. Всего указанная процедура потребует log2( M / N ) проходов процесса слияния. Схема алгоритма слияния приведена ниже:

псевдокод

Merge (N)

{

  // N - размер исходных блоков

  size = S

  in1 = A

  in2 = B

  currentOut = C

  while ( не конец )

  {

     while ( блоки не кончились )

     {

        слить блок длины size из файла in1

           с блоком длины size из файла in2

           записав результат в файл currentOut

        if      ( currentOut == A )

           currentOut = B

        else if ( currentOut == B )

           currentOut = A

        else if ( currentOut == C )

           currentOut = D

        else if ( currentOut == D )

           currentOut = C

     }

     size = size * 2

     if ( in1 == A )

     {

        in1 = C

        in2 = D

        currentOut = A

     }

     else

     {

        in1 = A

        in2 = B

        currentOut = C

     }

  }

}


2

5

7

10

2

1

3

3

5

7

1

2

3

3

5

5

7

7

10

12

A

B

C


 

А также другие работы, которые могут Вас заинтересовать

66335. Сценарій презентації поетичної збірки В.Федорової «Місце під сонцем» 41 KB
  Вітаємо вас у цій світлиці, у цьому затишному куточку Красноріченського освітнього округу, де зібралися люди, небайдужі до чистоти духовних криниць, до натхненної творчої праці та наділені великою любов’ю до культурного розквіту нашого краю.
66336. ШКОЛА ЮНОГО ФЕНОЛОГА 12.94 MB
  Дерева хоч і не вкрилися листям але вже пробудилися від зимових холодів. Багряне та золоте листя вірна ознака осені. Буває що частина листя жовкне задовго до осінніх днів. Іноді жовте листя на кущах і деревах з’являється ще в середині літа коли сухо та спекотно.
66337. Фестиваль юних обдарувань 55 KB
  Оформлення: святковоуричисто прикрашений актовий зал; емблема; кольрові кульки; квіти; виставка творчих робіт поробок; Державний прапор України; грамоти призерам; картки творчих досягнень; стрічки домінантам: Інтелектуал року Ерудит року Творча особистість Золоті руки Спортсмен року...
66338. Фестиваль європейських країн 112 KB
  Віддавна народи світу Мають власні прапори Наче долю горду й світлу Піднімають дороги 3й учень. Наш водій обирається учень якому дається кермо та головний убір водія рушаймо Пісню заспіваймо Учні і вчитель співають пісню Голубий вагон муз.
66339. Polymerase Chain Reaction (PCR) 40 KB
  Two primers, each about 20 bases long with sequence complementary to the sequence immediately adjacent to the DNA segment of interest.
66340. Функционирование русского языка в Республике Казахстан. Безударные гласные в корне слова (проверяемые, непроверяемые) 84.5 KB
  Языков на свете очень много – свыше двух тысяч. Точно установить их количество пока не удалось. Язык – явление общественное, он создается на протяжении длительного исторического периода. Язык возник в глубокой древности в процессе совместной трудовой деятельности людей.
66341. Язык как система. Язык и речь. Разделение понятий язык и речь. Правописание звонких и глухих согласных 76.5 KB
  Первые люди не имели языка. Удивительно, не правда ли? Даже птицы и разные другие существа, едва появившись на свет, умеют «изъясняться» на своем языке. У человека все по-другому. Только что родившийся не умеет говорить, каждому ребенку нужно этому учиться.
66343. Основные функции языка. Общая характеристика форм и видов речи (внешняя и внутренняя речь). Речь монологическая, речь диалогическая, письменная речь, устная речь монолог, диалог, полилог 70.5 KB
  Общая характеристика форм и видов речи внешняя и внутренняя речь. Речь монологическая речь диалогическая письменная речь устная речь монолог диалог полилог. Основные функции языка: Коммуникативная функция сообщения; Кумулятивная аккумулятивная накопительная...