4879

Сравнение эффективности алгоритмов сортировки

Лекция

Информатика, кибернетика и программирование

Сравнение эффективности алгоритмов сортировки. Каждый из рассмотренных алгоритмов сортировки обладает определенными преимуществами и недостатками. Для того, чтобы сравнивать между собой разные алгоритмы, необходимо сформулировать критерии, характери...

Русский

2012-11-28

47.5 KB

42 чел.

Сравнение эффективности алгоритмов сортировки.

Каждый из рассмотренных алгоритмов сортировки обладает определенными преимуществами и недостатками. Для того, чтобы сравнивать между собой разные алгоритмы, необходимо сформулировать критерии, характеризующие качество алгоритма. В качестве таких критериев могут выступать, например:

  •  скорость работы алгоритма, оцениваемая как суммарное необходимое количество «элементарных» операций. Часто в качестве такой элементарной операции выступает операция сравнения элементов последовательности. Заметим, что скорость работы может существенно зависеть от контекста, в котором выполняется алгоритм (аппаратное окружение, особенности входных данных и т.п.), в связи с чем может оказаться, что более важно оценивать, например, количество операций обмена элементов. Таким образом, выбор этого критерия определяется конкретными практическими соображениями, связанными с областью применения алгоритма. При этом часто важными являются оценки как в «предельных» случаях (т.е. в «лучшем» и «худшем»), так и «в среднем».
  •  необходимое количество памяти, требуемое для работы алгоритма. В этом смысле наиболее эффективны алгоритмы, не требующие выделения дополнительной памяти, такие алгоритмы часто называют сортировками на месте.
  •  зависимость от структуры исходных данных, например, поведение алгоритма для частично упорядоченных последовательностей, требование каких-либо особенностей входной последовательности и т.д.
  •  необходимость в рекурсивной реализации, может быть существенным фактором в условиях ограничений на доступную глубину стека вызовов.
  •  простота реализации, зачастую определяет выбор алгоритма в условиях ограниченного времени на разработку, отладку и тестирование алгоритма.

Оценки рассмотренных алгоритмов приведены в таблице:

Алгоритм

Вычислительная сложность

Требуемое количество памяти

В лучшем случае

В среднем

В худшем случае

«Пузырьковая» сортировка

O(N)

O(N2)

O(N2)

O(1)

Сортировка вставками

O(N)

O(N2)

O(N2)

O(1)

Сортировка выбором

O(N2)

O(N2)

O(N2)

O(1)

Сортировка Шелла

O(N)

O(N3/2)

O(N3/2)

O(1)

Быстрая сортировка

O(N logN)

O(N logN)

O(N2)

O(logN)

Пирамидальная сортировка

O(N logN)

O(N logN)

O(N logN)

O(1)

Сортировка слиянием

O(N logN)

O(N logN)

O(N logN)

O(N)

Для оценки фактического времени работы алгоритмов можно воспользоваться частью стандартной библиотеки (time.h), предоставляющей функции работы с системным таймером:

#include <iostream>

#include <time.h>

void main(int argc, char* argv[])

{

  // Синоним для типа данных "указатель на функцию"

  typedef void ( * t_SortFuncPrt )( double *, int );

  const int N_ALG = 7; // Число тестируемых алгоритмов

  // Массив указателей на все тестируемые функции сортировки

  t_SortFuncPrt sortAlgorithms[ N_ALG ] = { bubbleSort, insertSort, selectSort, shellSort, quickSort, heapSort, mergeSort };

  // Размер тестовой последовательности

  const int N = 10000;

  // Тестовые последовательности

  double * A[ N_ALG ];

  // Выделяем память

  for ( int i = 0; i < N_ALG; ++i )

     A[ i ] = new double[ N ];

  for ( int i = 0; i < N; ++i )

  {

     // Генерируем случайное число [0~1)

 double value = static_cast< double >( rand() ) / RAND_MAX;

     // Заполняем все тестовые последовательности одинаково

     for ( int j = 0; j < N_ALG; j++ )

        A[j][i] = value;

  }

 

  // Для каждого алгоритма

  for ( int i = 0; i < N_ALG; i++ )

  {

     // Засекаем текущее время

     clock_t before = clock();

     // Запускаем алгоритм

     sortAlgorithms[i]( A[i], N );

     // Засекаем время

     clock_t after = clock();

     // Общее время работы (мсек)

     clock_t totalTime = after - before;

     cout << "Algorithm " << i << ": " << totalTime << endl;

  }

  // Освобождаем память

  for ( int i = 0; i < N_ALG; ++i )

     delete[] A[ i ];

}


 

А также другие работы, которые могут Вас заинтересовать

1106. Преобразователи электрических сигналов на операционных усилителях 787 KB
  Исследование следующих схем на ОУ: сумматор, схема сложения-вычитания, интегратор, дифференциатор, а также логарифмический усилитель с n–р–n-транзистором, включенным в цепь ООС ОУ.
1107. Методы и приборы контроля качества и диагностики состояния объектов 620 KB
  Поверка аналоговых электроизмерительных средств. Расширение пределов измерения аналоговых электроизмерительных приборов. Измерение активных и реактивных сопротивлений косвенным методом. Измерение напряжений и токов при помощи электронного осциллографа.
1108. Общие сведения о полупроводниках 52.5 KB
  Модель атома. Энергетическая диаграмма полупроводника. Энергетические диаграммы полупроводников. Элементы, IV группа таблицы Менделеева германий (Ge), кремний (Si).
1109. Контактные явления в полупроводниках 272 KB
  Свойства контактов полученных из полупроводниковых материалов. Структура простейшего контакта, p-n перехода. Прямое напряжение на переходе. Контакт металл-полупроводник.
1110. Классификация полупроводниковых диодов 29 KB
  Приборы, использующие свойства полупроводников. Приборы, использующие свойства контактов. Транзисторы, самые популярные полупроводниковые приборы. Светоизлучающие приборы. Фоточувствительные приборы.
1111. Выпрямительные диоды 61 KB
  Вольт-амперные характеристики выпрямительных диодов. Допустимый прямой ток. Допустимое обратное напряжение. Структура p-i-n диода.
1112. Кремниевый стабилитрон 65.5 KB
  Процессы в p-n переходе при обратном напряжении. Энергетическая диаграмма p-n перехода при больших концентрациях. Пробои p-n перехода. ВАХ кремниевого стабилитрона. Характеристика стабилизатора.
1113. Импульсные диоды 38.5 KB
  Процессы в импульсном диоде. Работа импульсного диода. Материалы с высокой подвижностью носителей. Пример применения импульсного диода. Форма напряжения на нагрузочном сопротивлении.
1114. Использование варикапа 49.5 KB
  Основная характеристика варикапа и эквивалентная схема. Структура варикапа. Допустимое обратное напряжение.