48795

Анализ и синтез цифровых комбинационных схем

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Напишем, применяя правила де Моргана, логические функции для управления входами Di триггеров в базисе 2И-НЕ: Нарисуйте принципиальную схему проектируемого устройства самостоятельно, пользуясь его блок-схемой: Протестируйте схему в подходящей программе моделирования и убедитесь в ее работоспособности

Русский

2013-12-15

3.49 MB

7 чел.

КУРСОВАЯ РАБОТА
по дисциплине «Цифровые устройства и микропроцессоры»

Анализ и синтез цифровых комбинационных схем

Дана комбинационная схема (КС):

1. Установим функциональную связь между входами и выходами КС:

2. Упростим эту функциональную зависимость. Для этого ко второму слагаемому выражения для y применим правило де Моргана и закон двойного отрицания:

Упрощая эту формулу, окончательно получим:

3. Составим таблицу истинности:

x1

x2

x3

y

0

0

0

0

0

0

1

1

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

1

1

1

0

1

1

1

1

1

Следовательно, совершенная дизъюнктивная нормальная форма (СДНФ) для функциональной зависимости между входами и выходом КС имеет вид:

4. Минимизируем СДНФ, применяя операции склеивания и поглощения:

5. Для проверки минимизируем СДНФ еще раз, используя карту Карно:

Полученный результат содержит лишний член.

6. Для перехода к минимальной форме строим импликантную таблицу:

Термы\СДНФ

x

x

x

x

x

x

Импликанты  и  составляют ядро (занимают все столбцы импликантной таблицы), поэтому они не могут быть исключены. Лишней является импликанта . Отбрасывая ее, получаем:

7. Другой, более экономный вариант использования карты Карно:

Таким образом, все минимальные формы искомой функциональной зависимости, полученные разными способами, совпадают.

8. По полученной минимальной форме строим структурную схему устройства:

Видим, что структурная схема содержит только четыре логических элемента вместо шести в первоначальной схеме. Однако в схеме использованы три разных логических элемента: НЕ, 2И и 2ИЛИ.

9. Синтезируем схему в базисе 2И-НЕ. Для этого, применяя правила де Моргана и закон двойного отрицания, преобразуем минимальную форму следующим образом:

где .

10. Строим структурную схему комбинационного устройства в базисе 2И-НЕ:

11. Строим принципиальную электрическую схему комбинационного устройства:

12. Реализуем комбинационное устройство на базе микросхемы К555ЛА3:

13. В программе Elecronic Workbanch или в MATLAB моделируем созданное комбинационное устройство. На входы x1, x2, x3 подаем стандартные сигналы 000, 001, 010, 011, 100, 101, 110. 111 и на выходе y проверяем логические уровни на соответствие таблице истинности проектируемого устройства.

14. Для построения комбинационного устройства в базисе 2ИЛИ-НЕ составляем совершенную конъюнктивную форму (см. таблицу истинности):

Каждому члену СКНФ в таблице истинности соответствует нулевое значение функции y.

15. Упростим СКНФ, сгруппировав попарно члены (1,4) и (2,3). Для первой пары членов имеем:

Упрощая аналогично вторую пару членов, получим:

Таким образом

16. Строим импликативную таблицу:

Термы\СКНФ

x

x

x

x

Импликанты  и  составляют ядро (занимают все столбцы импликантной таблицы), поэтому они не могут быть исключены. Следовательно, минимальная конъюнктивная форма найдена.

17. Проверка с помощью карты Карно:

18. Структурная схема комбинационного устройства:

19. Синтезируем схему в базисе 2ИЛИ-НЕ:

20. Строим принципиальную электрическую схему комбинационного устройства:

21. Реализуем комбинационное устройство на базе микросхемы К555ЛЕ1:

22. В программе Elecronic Workbanch или в MATLAB моделируем созданное комбинационное устройство. На входы x1, x2, x3 подаем стандартные сигналы 000, 001, 010, 011, 100, 101, 110. 111 и на выходе y проверяем логические уровни на соответствие таблице истинности проектируемого устройства.


Анализ и синтез цифровых последовательных схем

Проектирование синхронного сдвигающего регистра

Спроектировать кольцевой 8-разрядный синхронный сдвигающий регистр на 2 бита влево и 3 бита вправо.

1. Проектируемый регистр выполняет две операции (k=2):

  •  сдвиг на два разряда влево;
  •  сдвиг на три разряда вправо.

Следовательно, всего требуется my=]log2k[ сигналов управления, где скобки ][ означают операцию округления до ближайшего целого вверх. В нашем случае:

my=]log22[=1

т.е. требуется один сигнал управления регистром y.

Договоримся, что значение сигнала управления

y=1 - определяет операцию сдвига на три разряда вправо;

y=0 - определяет операцию сдвига на два разряда влево.

2. Поведение сдвигающего регистра является регулярным, поэтому описание его триггеров можно свести к описанию только одного, i-го триггера (разряда регистра):

3. Условные обозначения типов переходов:

Тип перехода
QiQi+1

Условное обозначение
φ(
Qi)

00

0

01

α

10

β

11

1


4. Описание поведения
i-го разряда в терминах типов переходов:

№ п/п

y

Q(t)i-3

Q(t)i

Q(t)i+2

Q(t+1)i

φ(Qi)

0

0

0

0

0

0

0

1

0

0

0

1

1

α

2

0

0

1

0

0

β

3

0

0

1

1

1

1

4

0

1

0

0

0

0

5

0

1

0

1

1

α

6

0

1

1

0

0

β

7

0

1

1

1

1

1

8

1

0

0

0

0

0

9

1

0

0

1

0

0

10

1

0

1

0

0

β

11

1

0

1

1

0

β

12

1

1

0

0

1

α

13

1

1

0

1

1

α

14

1

1

1

0

1

1

15

1

1

1

1

1

1

5. Описание регистра с использованием карты Карно:

QiQi+2

yQi-3

00

01

11

10

00

0

0

α

0

01

α

α

α

0

11

1

1

1

β

10

β

β

1

β


6. Словарное описание триггеров различных типов:

φ(Qi)

T-триггер

D-триггер

RS-триггер

JK-триггер

T

D

R

S

J

K

0

0

0

x

0

0

x

1

0

1

0

x

x

0

α

1

1

0

1

1

x

β

1

0

1

0

x

1

7. Реализация регистра на базе T-триггеров. В карте Карно из пункта 5 заменим значения по правилу: 00, 10, α1, β1 (см. словарное описание T-триггера в пункте 6):

После упрощения с использованием карты Карно получаем:

8. Реализация регистра на базе JK-триггеров. Для получения Ji-карты в карте Карно из п.5 заменим значения по правилу: 00, 1x, α1, βx (см. словарное описание JK-триггера в пункте 6):


J
i – карта

После упрощения с использованием карты Карно получаем:

Для получения Ki-карты в карте Карно из п.5 заменим значения по правилу: 0x, 10, αx, β1 (см. словарное описание JK-триггера в пункте 6):

Ki – карта

После упрощения с использованием карты Карно получаем:

Выражение для Ki можно упростить, если заметить, что

Следовательно

Поэтому при построении схемы управления JK-триггером достаточно разработать только схему для входа J, а на вход K триггера подать сигнал .

9. Оценка сложности комбинационной схемы управления по Квайну:

где N – число логических входов во всей оцениваемой схеме, Ei=1 – прямой вход, Ei=2 – инверсный вход.

Сложность комбинационной схемы для управления входом Ji:

Сложность комбинационной схемы для управления входом Ti:

Здесь сложность для логического входа  берется равной 1, т.к. любой триггер всегда имеет и прямой, и инверсный выходы.

Сравнивая сложности комбинационных схем, видим, что SJ<ST, поэтому сдвигающий регистр будем реализовывать на основе JK-триггеров.

10. Для построения схемы сдвигающего регистра требуется определить выражения, отражающие логику формирования входных сигналов Ji для каждого разряда регистра. Из формулы

имеем:

11. Фрагмент принципиальной схемы для 2-го разряда сдвигающего регистра (для других разрядов регистра схемы аналогичны):

12. Протестируйте схему в подходящей программе моделирования и убедитесь в ее работоспособности.

Обратите внимание на то, что спроектированный сдвигающий регистр является циклическим, поэтому требуется предварительная запись в регистр сдвигаемой информации, используя асинхронные входы Si, Ri начальной установки его JK-триггеров.


Проектирование синхронной пересчетной схемы

Спроектировать синхронную пересчетную схему, реализующую следующую последовательность двоичных эквивалентов чисел:

Ni = 3, 7, 5, 0, 6, 4, 2

в которой предусмотрена функция реверса, т.е. реализация обратной последовательности чисел:

2, 4, 6, 0, 5, 7, 3

1. Число выполняемых счетчиком пересчетной схемы операций k=2. Следовательно, всего требуется my=]log2k[ сигналов управления, где скобки ][ означают операцию округления до ближайшего целого вверх. В нашем случае:

my=]log22[=1

т.е. требуется один сигнал управления регистром y.

Договоримся, что значение сигнала управления

y=0 - определяет прямой счет;

y=1 - определяет обратный счет.

2. Определим разрядность счетчика пересчетной схемы:

n=]log2(Nmax+1)[=log28=3

Обозначим выходные сигналы счетчика через Q1, Q2, Q3.

3. Табличное описание синхронного реверсивного счетчика:

№ п/п

y

Q3

Q2

Q1

φ(Q3)

φ(Q2)

φ(Q1)

1

0

0

1

1

α

1

1

2

0

1

1

1

1

β

1

3

0

1

0

1

β

0

β

4

0

0

0

0

α

α

0

5

0

1

1

0

1

β

0

6

0

1

0

0

β

α

0

7

0

0

1

0

0

1

α

8

x

x

x

x

x

x

x

1

1

0

1

0

α

β

0

2

1

1

0

0

1

α

0

3

1

1

1

0

β

β

0

4

1

0

0

0

α

0

α

5

1

1

0

1

1

α

1

6

1

1

1

1

β

1

1

7

1

0

1

1

0

1

β

8

x

x

x

x

x

x

x

4. Построение карт Карно:

  Q3-карта     Q2-карта

Q2Q1

yQ3

00

01

11

10

00

α

β

1

α

01

x

β

1

x

11

α

1

β

0

10

0

1

β

α

Q2Q1

yQ3

00

01

11

10

00

α

α

α

0

01

x

0

α

x

11

1

β

1

1

10

1

β

β

β

Q1-карта

Q2Q1

yQ3

00

01

11

10

00

0

0

0

α

01

x

β

1

x

11

1

1

1

β

10

α

0

0

0

5. Словарное описание триггеров различных типов:

φ(Qi)

T-триггер

D-триггер

RS-триггер

JK-триггер

T

D

R

S

J

K

0

0

0

x

0

0

x

1

0

1

0

x

x

0

α

1

1

0

1

1

x

β

1

0

1

0

x

1

6. Карты Карно для пересчетной схемы на базе D-триггеров получаются из Q-карт пункта 4 путем замены 00, 11, α1, β0:

D3-карта

D2-карта

D1-карта

Отсюда получаем:

7. Оценка сложности комбинационной схемы по Квайну:

8. J-карты Карно для пересчетной схемы на базе JK-триггеров получаются из Q-карт пункта 4 путем замены 00, 1x, α1, βx:


J3-карта

J2-карта

J1-карта

Отсюда получаем:

9. J-карты Карно для пересчетной схемы на базе JK-триггеров получаются из Q-карт пункта 4 путем замены 0x, 10, αx, β1:

  K3-карта     K2-карта

Q2Q1

yQ3

00

01

11

10

00

x

1

0

x

01

x

1

1

x

11

x

0

1

x

10

x

0

1

x

Q2Q1

yQ3

00

01

11

10

00

x

x

x

x

01

x

x

x

x

11

0

1

0

0

10

0

1

1

1

K1-карта

Q2Q1

yQ3

00

01

11

10

00

x

x

x

x

01

x

1

0

x

11

0

0

0

1

10

x

0

0

0

K3-карта

K2-карта

K1-карта

Отсюда получаем:

10. Оценка сложности комбинационной схемы по Квайну:

Сравнивая сложности комбинационных схем, видим, что SJSD, но D-триггер проще JK-триггера, поэтому пересчетную схему будем реализовывать на основе D-триггеров.

11. Запишем, применяя правила де Моргана, логические функции для управления входами Di триггеров в базисе 2И-НЕ:

12. Нарисуйте принципиальную схему проектируемого устройства самостоятельно, пользуясь его блок-схемой:

13. Протестируйте схему в подходящей программе моделирования и убедитесь в ее работоспособности.


 

А также другие работы, которые могут Вас заинтересовать

21380. Аппаратура передающего тракта: устройство и работа фидерного тракта ГА-230 49.71 KB
  В состав АФС Р – 330Б входят : передающая логопериодическая антенна ГА – 480; передающая ненаправленная антенна ГА – 482; приемо – пеленгаторная антенна Эдкока – Комолова Т – 251; направленная антенна РРС Р – 415В Z образная ДБ 11; ненаправленная антенна РРС ДБ12; штыревая антенна АШ – 4 р станции Р – 173; штыревая антенна АШ – 4 УПП Т – 210. Передающая логопериодическая антенна ГА – 480 предназначена для излучения р сигнала помехи в пространство с вертикальной поляризацией и используется при работе АСП на стоянке....
21381. Система электропитания станции. Средства связи 619.06 KB
  Наименование Назначение Приёмопередатчик: В него входят: Блок 3 Блок 4М Блок 7 Блок 9 Блок 10 Блок 11 Блок 12М Блок 13 Монтажный комплект антенного устройства Комплект запасных частей Кабель ВЧ Кабель НЧ Эксплуатационная документация Блок приёма Синтезатор частот Запоминающее устройство Перестраиваемый фильтр Усилитель мощности Антенносогласующее устройство Возбудитель Блок питания Устройство и работа радиостанции и её составных частей Структурная схема радиостанции Структурная схема радиостанции приведена на...
21382. Назначение, состав, тактико-технические характеристики АСП Р-934У 19.15 KB
  Диапазон рабочих частот 100000 – 399999 МГц. Станция в режиме ПОИСК позволяет производить: ручное обнаружение сигналов с любым видом модуляции во диапазоне частот; автоматическое обнаружение и сортировку сигналов по заранее заданному виду модуляции НС во всем диапазоне; визуальнослуховой анализ обнаруженных сигналов; ручное включение и выключение помехи на любой сигнал; автоматическое включение и выключение помехи на частоте обнаруженного сигнала для которого совпадает заданный вид модуляции с...
21383. Пост управления АШ-100 АСП Р-934У 62.58 KB
  Состав: АШ304 приемное АФУ предназначенное для приема электромагнитных волн и подачи их на приемные устройства поста управления; АШ401 приемное устройство плавного диапазона на базе Р313М2 предназначено для автоматического и ручного поиска сигналов; АШ400А панорамный анализатор обзора предназначен для визуального контроля за разведуемым участком диапазона частот; АШ403 датчик кода частоты предназначен для автоматического считывания частоты настройки АШ401 и формирования кода этой частоты для микропроцессора; Микропроцессор...
21384. Приемное устройство обнаружения 116.44 KB
  1 кГц; режим АВТОМАТ. 10 кГц. Технические характеристики Разрешающая способность прибора: в режиме ПОНОРАМА: 1МГц – в поддиапазоне 300 кГц – в секторе; в полосе анализа 250 кГц – 8 кГц; в полосе анализа 1 МГц – 30 кГц; в полосе анализа 50 кГц – 3 кГц. Время анализа: в пределах поддиапазона – 1 сек; в пределах сектора – 03 сек; в полосах обзора 1 МГц 250 кГц 50 кГц – 30 мс.
21385. Приемное устройство обнаружения. Приемник дискретный АШ404 57 KB
  Приемное устройство обнаружения предназначено для автоматической настройки на заданную частоту определения вида модуляции и спектрального анализа сигнала. Прибор АШ – 404 предназначен для автоматической настройки на разведанную частоту ее усиления и уточнения определения вида модуляции принимаемого сигнала и формирования усиленной 1ПЧ необходимой для работы анализатора спектра. Прибор позволяет автоматически определять вид модуляции принимаемого сигнала. Блок приемного устройства производит селекцию усиление принимаемого сигнала и его...
21386. Передающее устройство ВГ-020 37.25 KB
  Диапазон частот передатчика 100 – 400 МГц. Мощность на выходе передатчика не менее 1000 Вт. Время перестройки передатчика на любую частоту 2 мс. Потребляемая мощность передатчика не более 16 кВт без системы охлаждения.
21387. Система электропитания станции. Меры безопасности при работе на станции помех 58.25 KB
  Устройство и принцип работы АСП Р 934У Занятие №6Система электропитания станции. Меры безопасности при работе на станции помех Вопрос№1 Назначение технические характеристики состав устройство и принцип работы системы электропитания. Система электропитания станции предназначена для обеспечения питанием аппаратуры изделия защиты цепей питания от коротких замыканий и перегрузок коммутации цепей а также защиты обслуживающего персонала от поражения электрическим током. Технические характеристики Система электропитания обеспечивает...
21388. ПРАВО СОБСТВЕННОСТИ И ДРУГИЕ ВЕЩНЫЕ ПРАВА 23.75 KB
  наиболее крупные структурные подразделения отдельной отрасли права Это совокупность ГП норм регулирующих отношения собственности Содержание этих норм направленных на регулирование отношений собственности все цело определяются специфическими особенностями Частные имущественные отношения собственности отличаются от других ЧИО ПОНЯТИЕ ОТНОШЕНИЙ СОБСТВЕННОСТИ Собственность как экономическая категория Большинство экономистов и юристов давно поняли что собственность это не вещь и не отношение к вещи а это отношения которые складываются между...