48799

Зеркальная антенна

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Расчёт геометрических параметров зеркала и облучателя. Широко используются зеркала с параболической формой поверхности параболоид вращения усечённый параболоид вращения параболический цилиндр также распространены сферические зеркальные антенны двухзеркальные антенны.Расчёт геометрических параметров зеркала и облучателя. Форма излучающей поверхности и профиль зеркала выбирается исходя из назначения антенны и требований предъявляемых к ее электрическим характеристикам.

Русский

2013-12-15

895.5 KB

25 чел.

Федеральное агентство по образованию

Рязанский государственный радиотехнический университет

Кафедра РТС

Пояснительная записка к курсовой работе по дисциплине

«Антенны и устройства СВЧ»

на тему:

«Зеркальная антенна»

Выполнил: ст. гр. 318

Дударев А. Ю.

Проверил:

Елумеев В.И.

Рязань 2006

Содержание.

  1.  Введение……………………………………………………...4
  2.  Расчёт геометрических параметров зеркала и облучателя………..5
  3.  Расчёт основных электрических параметров и уточнение геометрических……………………………………………………….8
  4.  Конструктивный расчёт……………………………………………..14
  5.  Заключение……………………………………………………………17
  6.  Список литературы…………………………………………………...18
  7.  Приложение…………………………………………………………...19

1. Введение.

   Зеркальные антенны являются наиболее широко распространенным типом антенн в дециметровом и особенно в сантиметровом диапазонах волн. Такое широкое применение зеркальных антенн объясняется относительной простотой их конструкции, возможностью получения диаграммы направленности (ДН) почти любого типа из применяемых на практике, высоким КПД, малой шумовой температурой и т. д. Зеркальные антенны легко позволяют получить равносигнальную зону, а некоторые их типы могут применяться для быстрого перемещения (качания) ДН в пространстве без заметных искажений её формы в значительном секторе углов.

   Зеркальные антенны являются наиболее распространённым типом антенн, используемых для радиотелескопов и антенн с очень большой направленностью, применяемых для целей космической связи.

   Широко используются зеркала с параболической формой поверхности (параболоид вращения, усечённый параболоид вращения, параболический цилиндр), также распространены сферические зеркальные антенны, двухзеркальные антенны.      

2.Расчёт геометрических параметров зеркала и облучателя.

Форма излучающей поверхности и профиль зеркала выбирается исходя из назначения антенны и требований, предъявляемых к ее электрическим характеристикам.

Так как по заданию ширина диаграммы направленности в вертикальной и горизонтальной плоскостях различна и составляет 2о  в Н плоскости  и 4о в Е плоскости. Поэтому излучающую поверхность можно получить из круглой путём вырезки сегмента. Большое зеркало имеет форму параболоида вращения.

2.1. Основные параметры усечённого параболоида.

                          

                                                                                            Горизонтальная («Н») плоскость

                                                                                        

Вертикальная («Е») плоскость

          

– фокус; – фокусное расстояние; – размер раскрыва в горизонтальной (Н) плоскости; – размер раскрыва в вертикальной (Е) плоскости; – угол раскрыва (апертурный угол) в горизонтальной плоскости; – угол раскрыва (апертурный угол) в вертикальной плоскости.

2.2. Основные размеры зеркала.

Излучающая поверхность антенны будет идентична прямоугольному раскрыву, поэтому реальное распределение амплитуды поля хорошо аппроксимируется функцией:

  —   для  Н плоскости;

  —   для  Е плоскости.

Для передающей зеркальной антенны необходимо обеспечить такое облучение, чтобы ослабление поля на краях по всему контуру зеркала было одинаково и составляло 10–14 дБ относительно его центра. С учётом этого условия определяем по таблице [1]:

0,32 – относительный уровень на краю излучающей поверхности.

58 º – уровень половины мощности;

– 20 дБ – уровень первого бокового лепестка;

0,94 – коэффициент использования поверхности (К.И.П.). Введём поправку 25% (5% на тень и 20% на перелив энергии через края зеркала) и получаем .

Основные размеры зеркала определим из выражений:

                    

где ,  – числовые коэффициенты, определяемые законом распределения поля в соответствующей плоскости (Е или Н) и уровнем, на котором задана ширина диаграммы направленности; ,  – угол на который отклонён луч в плоскости Е или в плоскости Н соответственно; – рабочая длина волны антенны.

В нашем случае ,  равны 0, тогда

          

Угол раскрыва  зеркала антенны обычно находится в пределах от 100 до 1600 . При слишком большом угле раскрыва этого зеркала становится маленьким его фокусное расстояние.

При слишком маленьком угле раскрыва становится очень большим фокусное расстояние зеркала и оказывается неприемлемым продольный габаритный размер антенны.

В данной работе никаких рекомендаций по выбору угла раскрыва не задано, поэтому можно выбрать любой угол. Выберем его в Н плоскости равным 120о

По углу определяем фокусное расстояние зеркала:  по которому определяем угол раскрыва в вертикальной плоскости

.

Определим глубину зеркала в горизонтальной и вертикальной плоскостях:

              

  

Так как на краях зеркала должно быть обеспечено ослабление поля 10 дБ, то ширина нормированной диаграммы направленности облучателя по мощности на уровне 0,1(по напряжённости на уровне 0,3) должна быть равной углу раскрыва зеркала.

В качестве облучателя возьмем пирамидальный рупорный облучатель, возбуждаемый прямоугольным волноводом. Достоинствами таких облучателей является  простота и жёсткость конструкции.

3.1. Основные размеры рупора.

Исходными данными являются угол раскрыва антенны в соответствующей плоскости и уровень поля на краю раскрыва. Необходимо также учесть влияние зеркала на поле облучателя:

 получим   

Тогда в Н плоскости  

Отсюда   и

в Е плоскости  

Отсюда   и

Рассчитаем высоты рупора в плоскости Е и в плоскости Н:

,   

Выберем стандартный волновод по заданной длине волны см и мощности, чтобы избежать его пробоя, из таблицы приведённой в [?]. Возьмём волновод R-70 с размерами  и предельной мощностью .

Пересчитаем по уравнению стыковки высоту рупора в плоскости Е    [2].

Углы раскрыва рупора в плоскости Е и в плоскости Н: 
  

3. Расчёт основных электрических параметров

и уточнение геометрических.

3.1. Расчёт диаграммы направленности рупора.

Нормированная диаграмма направленности рупора в плоскости Н:  

 

          в декартовой системе координат                                в полярной системе координат

 

Нормированная диаграмма направленности рупора в плоскости E:

          в декартовой системе координат                                в полярной системе координат

  

3.2. Аппроксимация диаграммы направленности рупора.

   Аппроксимируем  диаграмму направленности рупора в плоскости «H» в пределах главного лепестка функцией  и для полученного значения  определим максимальный коэффициент использования поверхности зеркала  и соответствующий ему оптимальный угол раскрыва зеркала в горизонтальной плоскости

   Диаграмма направленности достаточно хорошо аппроксимируется функцией  т.е. .

     

   Значения  и  определяем по зависимости  при .

 

Таким образом  а .

   Пересчитываем фокусное расстояние для оптимального угла раскрыва.

.

3.3. Расчёт распределения амплитуды поля

на излучающей поверхности зеркала.

Нормированное распределение амплитуды поля в горизонтальной плоскости описывается выражением . Для перехода к зависимости , – координата точки по раскрыву зеркала, воспользуемся выражением из геометрической оптики  и получим следующее выражение:

 , где  изменяется от  до .

  

   Нормированное распределение амплитуды поля в вертикальной плоскости описывается выражением  или в зависимости от координаты по раскрыву зеркала  

, где  изменяется от  до .

                                

 

3.4. Аппроксимация распределения амплитуды поля на

излучающей поверхности зеркала.

     Так как амплитуда поля на краях раскрыва зеркала отлична от нуля, то

В этом случае удобна аппроксимация .[1]

   В вертикальной плоскости , где ,  изменяется от  до .  

 

   

   В горизонтальной плоскости , где ,  изменяется от  до .

 

3.5. Диаграмма направленности зеркальной антенны.

Ненормированная диаграмма направленности зеркальной антенны без учёта тени от облучателя в Н плоскости определяется выражением   , где   [1].

Нормированная диаграмма направленности: .

   Ненормированная диаграмма направленности зеркальной антенны  в вертикальной (Е) плоскости: . где  

Нормированная диаграмма направленности: .

   Нормированная диаграмма направленности с учётом тени от облучателя:

в вертикальной плоскости , где ;

в горизонтальной плоскости , где .

   

3.6. Расчёт КНД зеркальной антенны.

, – действующая площадь антенны, – максимальный коэффициент использования поверхности зеркала, – геометрическая площадь раскрыва зеркала,  – площадь облучателя, закрывающего раскрыв спереди. [4]

4. Конструктивный расчёт.

4.1. Расчёт профиля зеркала.

   Зеркало представляет собой усечённый параболоид вращения. Так как нужно обеспечить одинаковое (10-14 дБ) ослабление поля на краях по всему контуру зеркала, то его нужно обрезать не по прямой линии, а по некоторой кривой, являющейся контуром равной интенсивности поля.

   Диаграмма прямоугольного рупора на заданном уровне (10 дБ) имеет сечение, близкое к эллиптическому. Такую же эллиптическую форму должен иметь контур зеркала.[3]    

 

   

   

Уравнение поверхности зеркала в декартовой системе координат имеет следующий вид:

   Сечение зеркала вертикальной плоскостью имеет вид:

 

   Сечение зеркала горизонтальной плоскостью имеет вид:

4.3. Расчёт допуска на точность установки облучателя в фокусе.

   Для получения в раскрыве параболической антенны волны с плоским фазовым фронтом необходимо фазовый центр облучателя помещать по возможности точнее в фокусе параболической поверхности. Определим, с какой точностью необходимо выполнять это условие.

   Допустимый сдвиг облучателя из фокуса определяется неравенством

.[4]

4.4. Расчет допусков на точность изготовления зеркала.

   При определении допуска на точность изготовления зеркала исходят из допустимой фазовой ошибки в раскрыве, равной . Это даёт: , где –допустимое отклонение радиуса вектора поверхности зеркала. Допуск в центральной части зеркала равен, таким образом, , а на периферии зеркала может быть менее жёстким.[2]

   Допуск в центральной части зеркала ; допуск для большего угла раскрыва ; допуск для меньшего угла раскрыва .

4.5. Описание конструкции.

   Полученная зеркальная антенна состоит из следующих частей (см. приложение):

  1.  рефлектор (зеркало), представляющий собой усечённый параболоид вращения, и выполненный из тонкого металлического листа;
  2.  облучатель – пирамидальный рупор, обеспечивающий вертикальную поляризацию;
  3.  опоры рефлектора;
  4.  механизм вращения по азимуту;
  5.  подзеркальник;
  6.  механизм вращения по углу места;
  7.  питающий волновод;
  8.  оббортовка;
  9.  опоры облучателя;
  10.  платформа антенны.     

     

    

5. Заключение.

   В результате выполнения работы была разработана зеркальная антенна, удовлетворяющая заданным техническим требованиям: обеспечена веерная диаграмма направленности — шириной 2° в горизонтальной («Н») плоскости и 4° в вертикальной («Е») плоскости; работа осуществляется на длине волны ; обеспечена линейная поляризация (вертикальная).

Список литературы.

  1.  Устройства СВЧ и антенны: Методические указания к курсовому проектированию. Сост.: В. И. Елумеев, А. Д. Касаткин, В. Я. Рендакова. Рязань, РГРТА, 1998.   
  2.  «Проектирование высокочастотных     устройств радиолокационных станций ». Власов В.И., Берман Я.И. Ленинград, издательство «Судостроение», 1972.
  3.  «Проектирование антенно-фидерных устройств». Жук М.С.,

     Молочков Ю.Б.  М.-Л., издательство «Энергия», 1966.

  1.  «Антенно-фидерные устройства». Изд. 2-е, дополненное и переработанное. Драбкин А.Л. и др. М., «Сов. радио», 1974.
  2.  «Расчёт и конструирование антенно-фидерных устройств».  Дорохов А.П. Издательство Харьковского университета , 1960.  


EMBED Visio.Drawing.11  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Visio.Drawing.11  

180

150

0

0.2

0.4

.6

0.8

330

300

120

270

240

210

90

60

30

0

59.4

0.32

1

0.8

0.6

0.4

0.2

100

50

0

50

100

Q

90

45

0

45

90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F

EMBED Equation.3  

×

(

)

cos

EMBED Equation.3  

×

(

)

EMBED Equation.3  

EMBED Equation.3  

2


 

А также другие работы, которые могут Вас заинтересовать

77232. Конечный мозг, его развитие, строение (отделы, полость, ее стенки, части, белое и серое вещество). Границы долей полушарий большого мозга. Артерии большого мозга 15.86 KB
  Границы долей полушарий большого мозга. Артерии большого мозга. Конечный мозг telencephlon является производным переднего мозгового пузыря и представлен двумя полушариями большого мозга hemispheri cerebrtes. Продольная щель мозга разделяет полушария между собой поперечная щель мозжечок от затылочных долей.
77233. Белое вещество полушарий большого мозга. Внутренняя капсула. Корково-ядерный пусть 16.34 KB
  Белое вещество полушарий большого мозга. Оно представлено многочисленными волокнами: Проекционные волокна представлены пучками афферентных и эфферентных волокон осуществляющих связи проекционных центров коры полушарий большого мозга с базальными ганглиями ядрами ствола головного мозга или ядрами спинного мозга. свода мозга fornix cerebri обеспечивают связь подкорковых центров обоняния c проекционным центром обоняния столбы свода тело свода спайка свода и бахромки гиппокампа Ассоциативные волокна соединяют различные участки коры в...
77234. Обонятельный мозг развивается из вентральной части конечного мозга и состоит из двух отделов: центрального и переферического 243.57 KB
  Рецептор переферические отростки биполярных клеток 1 нейроны в regio olfctori сллизистой полости носа. Центральные отростки биполярных клеток образуют nn. Аксоны митральных клеток проходят в составе обонятельного тракта и вблизи обонятельного треугольника распадаются на три пучка: Медиальный пучок Промежуточный пучок Латеральный пучок Через переднюю спайку мозга в обонятельный тракт противоположной стороны к митральным клеткам обонятельной луковицы. Образованы центральными отростками биполярных клеток расположенных в обонятельной области...
77235. Борозды и извилины лобной доли. Динамическая локализация функций в лобной доле 80.82 KB
  precentrlis inferiorчасто сливается с верхней в единую предцентральную борозду gyrus frontlis inferior Проекционные центры участки коры полушарий большого мозга представляющие собой корковую часть анлизатора имеющие непосредственную морфофункциональную связь через проводящие пути с подкорковыми центрами. Ассоциативные центры участки коры не имеющие непосредственной связи с подкорковыми центрами связанные временной двусторонней связью с проекционными центрами. Центры лобной доли.
77236. Борозды и извилины теменной и затылочной долей коры больший полушарий. Динамическая локализация функций 252.5 KB
  Теменная доля: Борозды: Постцентральная борозда Внутритеменная борозда Извилины: Постцентральная извилина Нижняя теменная долька состоит из надкраевой и угловой извилин Центры: Проекционный центр общей чувствительности g. postcentrlis Проекционный центр схемы тела s. intrprietlis Ассоциативный центр стереогнозии узнавания предметов на ощупь lobus prietlis superior Ассоциативный центр праксии целенаправленных отработанных движений g. suprmrginlis Ассоциативный центр лексии зрительный анализатор письменной...
77237. Борозды и извилины височной доли больших полушарий. Динамическая локализация 248.5 KB
  Височная доля: Борозды: Верхняя височная борозда Нижняя височная борозда Извилины: Верхняя височная извилина Средняя височная извилина Нижняя височная извилина Центры: Проекционный центр слуха ядро слухового анализатора g. temporlis superior Проекционный центр вкуса ядро вкусового анализатора prhippocmplis et incus Проекционный центр обоняния старый prhippocmplis et incus Проекционный центр висцероцепции нижняя треть постцентральной и предцентральной извилин Проекционный центр вестибулярных функций g....
77238. Желудочки головного мозга, их сообщения между собой и с подпаутинным пространстовм. Цистерны подпаутинного пространства. Третий желудочек, его стенки 504.84 KB
  Третий желудочек его стенки Желудочки Боковые желудочки ventriculi lterles – полости конечного мозга полушарий большого мозга. III желудочек ventriculus tertius – полость промежуточного мозга diencephlon Латеральная стенка: таламус thlmus Нижняя стенка: гипоталамус hypothlmus: tuber cinerum recessus infundibul chism opticum recessus opticus corpor mmmilri частично pedunculu cerebelli Задняя стенка: comissur posterior et recessus pinelis; Верхняя: tel choroide ventriculu tertii сосудистая оболочка III желудочка...
77240. КОРКОВО-СПИННОМОЗГОВЫЕ ПУТИ. ПОКАЗАТЬ ИХ НА ТАБЛИЦЕ, ПРЕПАРАТЕ 439.43 KB
  Также проводит тормозные импульсы от коры полушарий большого мозга к нейронам двигательных ядер передних рогов спинного мозга т. оказывает тормозное действие на сегментарный аппарат спинного мозга. Тракт идет в нисходящем направлении во внутреннюю капсулу занимая передние 2 3 задней ножки В стволе головного мозга тракт проходит в prs bsilris I зона и в пирамидах продолговатого мозга В области нижней границы продолговатого мозга большая часть волокон каждой пирамиды переходит на противоположную сторону 80 образуя с аналогичными...