48826

Кольца, полукольца, мера на полукольце

Лекция

Математика и математический анализ

Кольцо множеств есть система множеств, замкнутая по отношению к взятию суммы и пересечения, вычитанию и образованию симметрической разности. Любое кольцо содержит пустое множество Ø, так как всегда А\A=Ø. Система, состоящая только из пустого множества, представляет собой наименьшее возможное кольцо множеств.

Русский

2014-09-21

409 KB

19 чел.

Тема 1. Кольца, полукольца, мера на полукольце

Пусть задано некоторое непустое множество Х. Непустое семейство  называется кольцом, если оно обладает тем свойством, что из АK и ВK следует АВK, АВK.

Утверждение 1. Пусть KP(X) кольцо. Тогда  для любых А, ВК выполнено АВ  K и А\В  K.

Таким образом, кольцо множеств есть система множеств, замкнутая по отношению к взятию суммы и пересечения, вычитанию и образованию симметрической разности. Любое кольцо содержит пустое множество Ø, так как всегда А\A. Система, состоящая только из пустого множества, представляет собой наименьшее возможное кольцо множеств.

Кольцо K называется алгеброй, если ХK. Х в этом случае называется единицей кольца.

Утверждение 2. Пусть непустая система K  Р (Х) и K  Ø обладает свойствами:

1) АK САK;

2) А, ВK АВK.

Тогда K является алгеброй.

Кольцо множеств называется -кольцом, если оно вместе с каждой последовательностью множеств А1, А2,… содержит и их счетное объединение, т.е. . -алгеброй называется -кольцо с единицей.

В теории меры часто приходится расширять произвольную систему множеств до кольца (алгебры) или -кольца.

Теорема 1. Для любой непустой системы множеств S существует одно и только одно кольцо K(S), содержащее S и содержащееся в любом кольце K, содержащем S.

Непустая система SР(Х) подмножеств множества Х называется полукольцом, если она содержит пустое множество, замкнута по отношению к образованию пересечений и обладает тем свойством, что если А, В  S, то найдется конечная система С1,…,Сn попарно непересекающихся множеств из S, что А\В=.

Отметим, что если S полукольцо множеств, то для А, ВS элементы А\В и  в общем случае не будут принадлежать S.

Теорема 2. Пусть S  полукольцо, тогда минимальное кольцо K(S), порожденное S, состоит из непересекающихся конечных объединений множеств из S, т.е. .

Пусть на некотором множестве Х задано полукольцо SР(Х). Будем говорить, что на S задана мера, если каждому элементу АS поставлено в соответствие вещественное число m(A)R таким образом, что выполнены следующие условия:

1)  AS : m(A)  0;

2) если , A, AiS, то .

Таким образом, мера есть числовая функция множества S, но не является отображением из Х в R.

Свойства меры на кольце

  1.  монотонность меры. Если А, ВK и АВ, то m(A)  m(B);
  2.  если А, ВК и А В, то m(B\A) = m(B)-m(A);
  3.  если А, ВK, то m(AB) = m(A)+m(B)-m(AB);
  4.  если А, ВK, то m(AB) =m(A)+m(B)-2m(AB);
  5.  для любых множеств А, ВK выполняется |m(A)-m(B)|  m(AB);

для любых множеств А, В, С  K имеет место следующее неравенство: m (AB)  m(AC)+m(CB).

Мера m называется счетно-аддитивной (σ-аддитивной), если для любых А1, А2, …  S таких, что , A  S выполнено .

  1.  счетная полуаддитивность меры. Пусть А1, А2,… K и , АK и пусть мера m  σ-аддитивна, тогда .

Теорема 3. Длина является σ-аддитивной мерой на полукольце S, состоящем из полуинтервалов вида [a;b[.

Меру m, заданную на кольце K, называют непрерывной сверху, если для любой возрастающей последовательности множеств А1А2 такой, что , где А, Аi K справедливо равенство .

Меру m, заданную на кольце K, называют непрерывной снизу, если для любой убывающей последовательности множеств А1А2 такой, что , А, АiK справедливо равенство .

Если мера непрерывна сверху, то она непрерывна снизу и наоборот. Будем называть меру непрерывной, если она непрерывна сверху или снизу.

Теорема 4. Мера m, заданная на кольце K, является σ-аддитивной тогда и только тогда, когда она непрерывна.

Примеры решения задач

Задача 1. Пусть Z – множество целых чисел. Задает ли данная формула меру на Р(Z), если Ø, если А содержит только отрицательные числа.

Решение. μ не является мерой, т.к. NP(Z) и μ(N)=, т.е. μ не является отображением P(Z) в R.

Задача 2. Пусть Х – произвольное множество. Выяснить, является ли мерой на Р(Х) cледующая функция множеств: μ(Ø)=0; , где  фиксированная последовательность.

Решение. μ является отображением из P(X) в R, т.к. ряд  сходится, но не является мерой, потому что не выполнено условие положительности μ. Если множество А содержит только x2, то μ(А) = –0,25.

Задача 3. Пусть Х = [-1;1[, F : XR и F(x)=sgn x, S полукольцо, порожденное системой полуинтервалов {[a, b[, -1 a < b <1}. Определим на S функцию μ по формуле μ ([a, b[) = F(b)-F(a). Является ли μ σ-аддитивной мерой.

Решение. Функция F является неубывающей, ограниченной, имеющей одну точку разрыва х = 0. Следовательно, F порождает меру. Покажем, что мера μ не является σ-аддитивной. Рассмотрим полуинтервал [-12,0[ и представим его в виде счетного объединения попарно непересекающихся полуинтервалов:

.

Тогда μ ( [-½, 0[ ) = F(0) –F(-½) = 0(1) = 1.

Далее рассмотрим ряд

.

Составим последовательность частичных сумм этого ряда Sn=F(an) – F(a1) = (1)(1) = 0. Следовательно, , но

Итак, мы получили, что . Тем самым доказано, что мера μ не является σ-аддитивной. Обратим внимание, что функция F не является непрерывной слева.

Задача 4. Пусть , S – совокупность дуг, содержащихся в X, замкнутых слева и открытых справа , h(x, y) – неотрицательная, непрерывная на прямоугольнике [0, 2π]  [0, 1] функция. Пусть  функция, заданная на [0,2π]. Положим

.

Задает ли F σ-аддитивную меру.

Решение. Функция F как интеграл Римана с переменным верхним пределом является неубывающей, непрерывной слева, следовательно, μ является σ-аддитивной мерой.

Задача 5. Пусть Х={a, b, c, d}, кольцо K=P(X). Определить на K меру так, чтобы μ({a})=10, μ({a, b})=100.

Решение. Для любого множества AP(X) определим меру по формуле

где  – количество элементов во множестве А. Простым перебором показывается, что μ – аддитивная функция.

Задача 6. Пусть μ – мера, заданная на кольце множеств K. Доказать, что если для A, BK и μ(АВ) = 0, то μA = μB.

Доказательство. Воспользуемся свойством меры: . Следовательно, , т.е. μA = μB.

Задание 1. Образуют ли кольцо, σ-кольцо, алгебру, полукольцо следующие системы множеств:

  1.  Все ограниченные множества на прямой;
    1.  Все конечные множества на прямой;
    2.  Все счетные множества на прямой;
    3.  Все конечные множества натуральных чисел;
    4.  Все ограниченные замкнутые (компактные) множества на прямой;
    5.  Все всюду плотные множества в R;
    6.  Все множества, дополнения к которым конечны в R;
    7.  Все множества, дополнения к которым счетны в R;
    8.  Все компактные множества в R²;
    9.  Все выпуклые множества на плоскости;
    10.  Все множества, инвариантные относительно вращения вокруг начала координат;
    11.  Множество всех многоугольников на плоскости;
    12.  Все множества на плоскости, инвариантные относительно растяжений и сжатий;
    13.  Все конечные подмножества некоторого множества Х.

Задание 2. Пусть Х={a, b, c}, S = P(X). Построить, если возможно, меру на S так, чтобы:

  1.  m({a}) = 2, m({a, b}) = 5, m({a, b, c}) = 8;
    1.  m({b}) = 2, m({b, c}) = 6, m({a, b, c}) = 7;
    2.  m({c}) = 1, m({a, c}) = 5, m({c, b}) = 8;
    3.  m({a}) = 1, m({a, c}) = 4, m({a, b, c}) = 5;
    4.  m({b}) = 2, m({a, b}) = 3, m({a, b, c}) = 4;
    5.  m({c}) = 1, m({b, c}) = 4, m({a, c}) = 6;
    6.  m({a, b}) = 2, m({b, c}) = 4, m({a, c}) = 6;
    7.  m({a, c}) = 5, m({c, b}) = 6, m({a, b}) = 8;
    8.  m({c}) = 3, m({a, c}) = 5, m({b, c}) = 4;
    9.  m({b, c}) = 5, m({a, c}) = 5, m({a, b, c}) = 10;
    10.  m({a, b}) = 2, m({b, c}) = 6, m({a, b, c}) = 8;
    11.  m({b}) = 1, m({b, c}) = 2, m({a, b, c}) = 5;
    12.  m({a, c}) = 5, m({a, b}) = 7, m({a, b, c}) = 8;
    13.  m({c}) = 3, m({b, c}) = 4, m({a, c}) = 5.

Задание 3. Пусть Х=N. K – кольцо, состоящее из конечных подмножеств N. Задает ли данная формула меру на K?

3.1. ;    3.2. ;

3.3. ;    3.4. ;

3.5. ;   3.6. ;

3.7.   среднее арифметическое;

3.8.   среднее геометрическое;

3.9. ;  3.10. ;

3.11.  – среднее квадратическое;

3.12.   среднее гармоническое;

3.13. ;    3.14. ,

где   количествово элементов множества А.

Задание 4. Пусть Х=[-1;1[, S = {[a,b[X}, m([a,b[) = F(b) –F(a). При каких значениях параметра эта формула задает меру, σ-аддитивную меру. Если мера не является σ-аддитивной, то указать полуинтервал [,  [ и его разбиение  такое, что .

4.1.    4.2.

4.3.    4.4.

4.5.             4.6.

4.7.    4.8.

4.9.            4.10.

4.11.           4.12.

4.13.         4.14.


 

А также другие работы, которые могут Вас заинтересовать

64259. Методы исследования в зоопсихологии 34 KB
  Для того чтобы получить представление о тех или иных психических качествах и процессах у животных зоопсихологи в своих исследованиях анализируют конкретные формы их двигательной активности структуру действий и актов поведения направленных на компоненты среды.
64260. Проблема инстинкта и научения в свете эволюционных учений Ж.Б. Ламарка, К.Ф. Рулье, Ч. Дарвина 32 KB
  Рассматривая историю зарождения и становления зоопсихологии развитие взглядов на психическую деятельность и поведение животных можно заметить что еще древние мыслители предвосхитили в ряде существенных моментов современные взгляды на поведение животных.
64261. Инстинктивное поведение 24.5 KB
  Если же под этим термином подразумевать врожденное наследственно фиксированное видотипичное поведение то его можно для облегчения этологического анализа условно разделить на инстинктивные действия или акты которые в свою очередь состоят из отдельных инстинктивных движений поз звуков и тому подобное.
64262. Пластичность инстинктивного поведения 27.5 KB
  Он пришел к выводу что инстинктивные компоненты поведения животных возникли и развивались под воздействием и контролем естественного отбора. Он указывал что инстинктивное поведение это развивающаяся пластическая деятельность изменяемая внешними воздействиями...
64263. Таксисы. Общая ориентация инстинктивных движений 27.5 KB
  Таксисы это врожденные генетически фиксированные реакции животных на определенные агенты среды которые играют роль направляющих ключевых раздражителей. Таксисы отвечают на направляющие ключевые раздражители и меняют вектор протекания инстинктивной реакции но они не способны обусловливать начало...
64264. Проблема мотивации поведения у животных. Мотивационные системы 32.5 KB
  Традиционное понимание мотивации у животных основано на принципе простой обратной связи а именно изменение во внутреннем состоянии воспринимается и оценивается головным мозгом животного и побуждает его к определенному поведению создает драйв.
64265. Мотивационное состояние 27 KB
  Это одновременно физиологическое и перцептивное состояние представлено в головном мозгу так называемым мотивационным состоянием животного. Оно включает факторы вызывающие как начало деятельности так и поведение животного в данный момент.
64266. Общая характеристика процесса научения 41 KB
  Приобретение и накопление индивидуального опыта связаны с процессами научения которые дают животному возможность более полного и адекватного психического отражения окружающей среды Способность к научению зависит от уровня филогенетического...
64267. Навык как основной компонент научения 24.5 KB
  При формировании навыка используются врожденные двигательные координации в новых сигнальных ситуациях или формируется новая двигательная координация в этом случае появляются новые генетически не фиксированные движения животное научается что-то делать по-новому.