4885

Связный список. Сортировка списков

Лекция

Информатика, кибернетика и программирование

Связный список. Сортировка списков. Как известно, массив всегда занимает непрерывный блок памяти, что позволяет быстро получать доступ к произвольному элементу массива по индексу, однако существенно затрудняет вставку и удаление элементов, поскольку...

Русский

2012-11-28

51 KB

47 чел.

Связный список. Сортировка списков.

Как известно, массив всегда занимает непрерывный блок памяти, что позволяет быстро получать доступ к произвольному элементу массива по индексу, однако существенно затрудняет вставку и удаление элементов, поскольку эти операции вынуждают осуществлять сдвиг всех следующих элементов. Кроме того, вставка элемента в заполненный динамический массив приводит к необходимости выделения памяти и перемещения всего содержимого массива.

Список представляет собой простейший пример динамической структуры данных. В динамических структурах данных элементы содержатся в произвольных участках памяти, а логические связи между элементами осуществляются путем явной адресации «соседних» элементов.

Простейший односвязный список представляет собой линейную последовательность элементов, для каждого из которых, кроме последнего, известен следующий элемент:

 Элементы такого списка можно описать в следующем виде:

struct ListNode

{

  ListNode * next; // Указатель на следущий элемент списка

  ...          // Произвольная информация

};

Доступ к такому списку обеспечивается через указатель на его первый элемент:

struct LinkedList

{

  ListNode * head; // Указатель на первый элемент списка

};

Типичный набор операций на списком включает в себя добавление, удаление и поиск элементов, вычисление длины списка, последовательный обход элементов (итерацию).  Вставка элементов в список очень эффективна: для этого нужно всего лишь переназначить связи только двух соседних элементов, на место между которыми осуществляется вставка:

Однако, удаление элементов из односвязного списка представляет собой крайне неэффективную операцию, поскольку для сохранения целостности списка необходимо иметь доступ не только к следующему за удаляемым элементу, но и к предыдущему, для чего потребовалось бы «просмотреть» все элементы от самого начала списка. В связи с этим, часто используют двусвязные списки, где каждый элемент «знает» как про следующий за ним, так и про предыдущий:

Такой список позволяет осуществлять удаление элементов так же эффективно, как и вставку. Тем не менее, осуществление произвольного доступа к элементам по индексу в списках гораздо менее эффективно, чем в массивах.

В следующем примере показано заполнение односвязного списка и реализация функций вывода списка на экран и очистки памяти:

// Структура, описывающая односвязный список

struct ListNode

{

  ListNode * next;

  int value;

};

// Функция выводит список на экран

void printList( const ListNode * head )

{

  const ListNode * it = head;

  while ( true )

  {

     cout << it->value << " ";

     if ( it->next == 0 )

        break;

     

     it = it->next;

  }

  cout << endl;

}

// Функция рекурсивно освобождает память, занятую односвязным списком

void clearList( ListNode * a )

{

  if ( a->next )

     clearList( a->next );

  cout << "Deleting: " << a->value << endl;

  delete a;

}

void main()

{

  ListNode * head = new ListNode;

  head->value = 0;

  // Указатель на предыдущий узел

  ListNode * prevnode = head;

  const int N = 10;

  int A[N] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

  

  for ( int i = 0; i < N; ++i )

  {

     ListNode * tmp = new ListNode; // новый узел

     tmp->value = A[i];

     

     // Связываем предыдущий узел с новым

     prevnode->next = tmp;

     // Обновляем указатель на предыдущий узел

     prevnode = tmp;

  }

  // Устанавливаем конец списка

  prevnode->next = 0;

  printList( head );

  clearList( head );

}

Сортировка списков.

Поскольку для связных списков отсутствует возможность прямого обращения к элементам по индексу, непосредственное использование большинства рассмотренных алгоритмов сортировки будет существенно затруднено. Как и в случае с внешними данными, для сортировки списков наиболее удобно использовать алгоритм сортировки слиянием.

Как и ранее, реализация предусматривает две функции: функция mergeLists  осуществляет упорядоченное слияние двух списков в один, а рекурсивная функция mergeSort выполняет разделение списка и возвращает указатель на отсортированный список. Заметим, что эта реализация не требует выделения дополнительной памяти для временного хранения упорядоченных данных – список сортируется путем переупорядочивания связей. Однако, никакого дополнительного преимущества в этом нет – фактический расход памяти на организацию связей в списке имеет примерно тот же порядок.

// Функция осуществляет слияние двух списков

ListNode * mergeLists( ListNode * a, ListNode * b )

{

  ListNode tmp;

  ListNode * head = & tmp;

  ListNode * c = head;

  // Сливаем

  while ( ( a != 0 ) && ( b != 0 ) )

  {

     if ( a->value < b->value )

     {

        c->next = a;

        c = a;

        a = a->next;

     }

     else

     {

        c->next = b;

        c = b;

        b = b->next;

     }

  }

  // Присоединяем оставшийся "хвост"

  c->next = ( a == 0 ) ? b : a ;

  return head->next;

}

// Сортировка связного списка слиянием

ListNode * mergeSort( ListNode * c )

{

  if ( c == 0 || c->next == 0 ) // сортировать нечего

     return c;

  ListNode * a = c; // a хранит начало первой части

  ListNode * b = c->next; // служебный указатель

  while ( ( b != 0 ) && ( b->next != 0 ) )

  {

     c = c->next; // первый указатель делает один шаг

     b = b->next->next; // второй - два шага

  }

  b = c->next; // в b записали начало второй части списка

  c->next = 0; // разрываем связь - конец первой части списка

  printList( a );

  printList( b );

  cout << "----" << endl;

  // Рекурсивно вызываем ту же процедуру и сливаем части списка

  return mergeLists( mergeSort(a), mergeSort(b) );

}


L1

L2

L3

4

L1

L2

L3

L4

Lnew

L1

L2

L3

L4


 

А также другие работы, которые могут Вас заинтересовать

68896. Ресурсы (быстрые клавиши) 48 KB
  Чаще всего быстрые клавиши используются в программах для дублирования действий обычных опций меню. Однако быстрые клавиши могут выполнять и такие функции которых нет в меню. Например в некоторых программах для Windows имеется меню Edit которое включает в себя опцию Delete...
68897. Многозадачность и многопоточность 61 KB
  Многозадачность (multitasking) – это способность операционной системы выполнять несколько программ одновременно. В основе реализации этого принципа на персональных ЭВМ лежит использование операционной системой аппаратного таймера для выделения отрезков времени (time sliced) для каждого из одновременно выполняемых процессов.
68898. Многооконный интерфейс 121.5 KB
  Эти дочерние окна выглядят совершенно так же как обычные окна приложений. Меню главного окна приложения относится и к окнам документов. В каждый конкретный момент времени только одно окно документа активно об этом говорит выделенная подсветкой строка заголовка и находится над всеми остальными...
68899. Динамически подключаемые библиотеки 47 KB
  До сих пор мы использовали множество функций API для создания окон и оконных процедур, рисования, работы с клавиатурой и мышью, ввода-вывода. Все эти функции работали исправно и вы не задумывались над вопросом: где расположены эти функции и каким образом они подключаются к вашей программе.
68900. Представление графической информации 56.5 KB
  Битовый образ это цифровое представление изображения. Каждому пикселю точке изображения соответствует один или более бит битового образа которые определяют цвет пикселя. К достоинствам можно отнести хорошую передачу изображения именно они чаще всего используются для хранения фотографий...
68902. Понятие системного программирования 56 KB
  Например с точки зрения программиста который занимается ядром операционной системы человек создающий компилятор является пользователем системы т. Примеров таких систем можно привести множество: операционная система офисное программное обеспечение системы проектирования и т.
68903. Скелет оконной программы 95.5 KB
  Функцию создания окна. Для его создания необходимо выполнить два шага: регистрацию класса окна и вызвать функцию создания окна. Оба этих действия определяют основные свойства видимые и невидимые характеристики окна.
68904. Понятие контекста устройства 126 KB
  В связи с этим между программой и видео памятью было введено некоторое промежуточное звено получившее название контекста. Благодаря введению контекста процесс вывода информации изменился и имеет следующий вид рис. Программная модель контекста В программе см.