48882

РАСЧЕТ ОСНОВНЫХ ХАРАКТЕРИСТИК ЦИФРОВОЙ СИСТЕМЫ ПЕРЕДАЧИ НЕПРЕРЫВНЫХ СООБЩЕНИЙ

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Краткое описание процесса преобразвания сигнала от источника сообщения. Источник сообщений выдает на выходе непрерывный сигнал t который предаётся в формирователь первичного сигнала для преобразования в первичный электрический сигнал bt. Количество уровней квантования L определяется исходя из ошибки квантования пикфактора сигнала и отношения сигнал шум. Далее сигнал bикмt передается в модулятор – это преобразование цифрового сигнала в аналоговый ut.

Русский

2013-12-17

680.5 KB

4 чел.

Государственное образовательное учреждение высшего профессионального образования

ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Средства связи и информационная безопасность»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

«Теория электрической связи»

на тему: РАСЧЕТ ОСНОВНЫХ ХАРАКТЕРИСТИК ЦИФРОВОЙ СИСТЕМЫ ПЕРЕДАЧИ НЕПРЕРЫВНЫХ СООБЩЕНИЙ

Автор работы (проекта): А. А. Кандараков

Специальность 210402 «Средства связи с подвижными объектами»

Группа:  ЗРП - 310

Руководитель работы: В. И. Левченко                

Проект защищен с оценкой    «ХОРОШО». Перепутаны данные из двух вариантов. Есть ошибки с последствиями          

Омск 2013 г.

1. СТРУКТУРНАЯ СХЕМА. ИСХОДНЫЕ ДАННЫЕ

Структурная схема цифровой системы передачи непрерывных сообщений.

Краткое описание процесса преобразвания сигнала от источника сообщения.

 

Источник сообщений выдает на выходе непрерывный сигнал a(t), который предаётся в формирователь первичного сигнала для преобразования в первичный электрический сигнал b(t). В данной работе принимается условие о том, что b(t) является   стационарным  случайным  процессом,  мгновенные  значения которого распределены равномерно в интервале [bмин., bмакс.]. Далее сообщение b(t) при помощи дискретизатора подвергается дискретизации по времени. Интервал дискретизации выбирается на основе теоремы Котельникова, при которых непрерывный сигнал может быть точно восстановлен по ​соответствующему ему сигналу с дискретным временем. Полученные отсчеты мгновенных значений сообщения {b(ti)} квантуются по уровню в квантователе. Количество уровней квантования L определяется исходя из ошибки квантования, пик-фактора сигнала и отношения сигнал/шум. А число разрядов в кодовом слове будет равно m=log2L. . Чаще всего кодирование сводится к записи номера уровня в двоичной системе счисления. Такое преобразование называется импульсно-кодовой модуляцией и осуществляется в кодере. Далее сигнал bикм(t) передается в модулятор – это преобразование цифрового сигнала в аналоговый u(t). Для этого используют такие виды модуляции, как ЧМ, ФМ, АМ, ОФМ. В данном случае полученную последовательность двоичных кодовых комбинаций преобразуем с помощью ОФМ, получая соответствующие импульсы. 

Далее по линии связи сигнал транслируется (передается) получателю сообщения. Линией связи называется среда, используемая для передачи сигналов от передатчика к приемнику (симметричный, коаксиальный или волоконно-оптический кабель в системах электросвязи, свободное пространство в системах радиосвязи).

Далее импульсная последовательность передается на вход цифро-аналогового преобразователя (ЦАП), назначение которого состоит в восстановлении непрерывного сообщения по принятой последовательности кодовых комбинаций. В состав ЦАП входят декодер, предназначенный для преобразования кодовых комбинаций в квантованную последовательность отсчетов, и сглаживающий фильтр, восстанавливающий непрерывное сообщение по квантованным значениям. На выходе ЦАП, то есть на выходе фильтра мы получаем исходный передаваемый сигнал, но слегка искажённый. Полученное непрерывное сообщение передается затем получателю сообщения.

Исходные данные:

- шаг квантования сигнала:  Δb = 0,1 В.

- энергетический спектр первичного сигнала сосредоточен в полосе частот от 0 до .

- кодирование отсчетов сигнала b(ti): k-разрядный, равномерный двоичный код с добавлением одного бита проверки на четность.

- выходной сигнал кодера bикм(t): последовательность импульсов со значениями «0» и «1».

- сигнал несущей частоты u0(t)=Um cos2πft, Um= 1 В, f >> Vк, где (бит/с) – скорость передачи двоичных символов кодера (т.е. выполняется условие узкополосности сигнала).

- канал связи  постоянными параметрами и аддитивной помехой, имеет полосу пропускания  FK  значительно большую, чем ширина спектра модулированного сигнала FU.  Смесь сигнала и шума на выходе канала  z(t)=s(t)+n(t), где s(t)= u(t)∙Kпк – сигнал на выходе канала,   n(t)- аддитивный гауссовский шум с равномерным энергетическим спектром («белый» шум). Kпк – коэффициент передачи канала. (Усилители, частотные фильтры и преобразователи частот передатчика  и приемника аналоговой части ЦСП включены в состав канала связи  и предполагаются неискажающими).

- входное  и выходное сопротивления канала связи содержат только активную составляющую Rвх = Rвых = Rк= 50 Ом.

- фильтр нижних частот (ФНЧ) - идеальный с частотой среза Fср.

В таблице приведены следующие исходные данные:

  •   минимальное bмин. и максимальное bмакс. значения передаваемого сигнала b(t) в вольтах;
  •  полоса частот, занимаемая спектром исходного сообщения Fc  в герцах;
  •  номер передаваемой кодовой комбинации  j;
  •  вид модуляции (манипуляции) ОФМ;
  •  коэффициент передачи канала связи Kпк;  
  •  СПМ шума на входе демодулятора N0;
  •  способ приема.

bмин (В)

bмакс (В)

Fc (Гц)

j

вид модуляции

Кпк

N0

(Bт/Гц)

способ приёма

-1,6

+ 1,6

9∙103

77

ФМ

0,7

1,4 ∙10-8

когерентный

ТАКОГО ВАРИАНТА В МУ НЕТ.  Тем не менее, посмотрим расчеты

По заданным исходным данным произведу расчет основных характеристик цифровой системы передачи непрерывных сообщений.

2. ИСТОЧНИК СООБЩЕНИЙ И ФОРМИРОВАТЕЛЬ ПЕРВИЧНОГО СИГНАЛА

 Источник сообщений выдает сообщение b(t), представляющее собой непрерывный стационарный случайный процесс, мгновенные значения которого в интервале от -1,6 до +1,6 В.

Сигналы в системах передачи информации и действующие в них помехи по своей природе являются случайными процессами. Для их описания необходимо применять математический аппарат теории вероятностей и случайных процессов.

Плотность распределения вероятностей.

Одномерная плотность распределения вероятностей p(x,t) случайного процесса Х(t) (плотность вероятностей - ПВ) характеризует распределение вероятностей реализации случайной величины Х(ti) в произвольный момент времени ti. Она представляет собой производную от функции распределения вероятностей:  

p(x,ti) dx =1  

Для данного случая;

P(b)=0  при b<-1,6; b>1,6

P(b)=1/3,2=0,3125  при b>-1,6; b<1,6

 

Интегральная функция распределения.  

Интегральная функция распределения (ИФР)  F(x,ti)   определяет вероятность того, что в момент времени ti значение случайной величины X(ti) не превысит значения x:

F(x,ti) = P[X(ti)≤x].

Функция F(x,t) является неубывающей с предельными значениями F(-∞,t)=0 и F(∞,t)=1. При известной функции F(x,t) вероятность того, что значение X(ti) в выборках будет попадать в определенный интервал значений [a, b] будет определяться выражением:

P[a<X(ti)≤b] = F(b,ti) – F(a,ti).

                                                                                                                                                                                                                   

F(b)=0   при b<-1,6

F(b)=(b+1,6)/3,2  при b>-1,6; b<1,6 

F(b)=1 при b>1,6

Математическое ожидание.

Математическое ожидание (МО) представляет собой статистическое усреднение случайной величины X(ti), 

mx(t)  M[Х(t] = x p(x;t) dx,

Математическое ожидание mx(t) представляет собой неслучайную составляющую случайного процесса X(t).  

Для данного случая;

 Дисперсия.

Функция дисперсии Dx(t) случайного процесса является теоретической оценкой среднего взвешенного значения разности [Х(t)-mx(t)]2:

Дисперсия характеризует разброс мгновенных значений реализаций случайного процесса относительно его среднего значения.

Физический смысл величины среднеквадратического отклонения (СКО) x(t) - действующее значение случайного напряжения или тока на единичном сопротивлении, a Dx(t) - мощность переменной составляющей случайного процесса.

Для данного случая;

 

3. ДИСКРЕТИЗАТОР И КВАНТОВАТЕЛЬ

Согласно теоремы Котельникова допустимый интервал дискретизации первичного сигнала b(t) по времени

Число уровней квантования

                                                                                                                    

Средняя мощность шума квантования

 

Рассматривая дискретизатор и квантователь вместе, как источник дискретных  сигналов B={bкв(ti)} с объемом алфавита L, определяем его энтропию Н(В) и производительность Н(В) при условии, что отсчеты, взятые через интервал t, статистически независимы.

4. КОДЕР

Определяю число информационных символов двоичного кода k, необходимое для кодирования всех L уровней квантованного сообщения.

                                                                                

Определяю длину кодовой комбинации n кода с одной проверкой на четность.

Нахожу избыточность кода ρ.                                                                                                                                                                                           

Записываю комбинацию примитивного двоичного кода, соответствующего передаче j-го уровня, считая, что она представляет собой запись числа j в двоичной системе счисления.

                                        

   j=77 в двоичном виде:   1001101     ПРИ ДАННОМ L  этого числа быть не может. (Несуществующий вариант)

                                            b7     b6       b5      b4     b3      b2      b1

                       Алгоритм:  1*26+1*25+1*24+1*23+1*22+1*21+1*20 

                                           7        6        5        4       3        2        1    (разряды)

Кодовая комбинация примитивного кода:  1001101

Записываю соответствующую комбинацию кода с проверкой на четность, указав в ней информационные и проверочный разряды.

Проверочный разряд b8=b7+b6+b5+b4+b3+b2+b1=0

В результате получаем кодовую комбинацию кода с проверкой на четность: 01001101 (проверочный символ – слева).

Определяю число двоичных символов, выдаваемых кодером в секунду (скорость манипуляции) Vk и длительность передачи символа (тактовый интервал синхронного двоичного сигнала) Т.

5. МОДУЛЯТОР

Записываю аналитическое выражение модулированного сигнала u(t), связывающее его с сигналом bикм(t). 

На выходе модулятора при ФМ при каждой передаче посылки «1» производится смена фазы несущей на 180о, а при передачи символа «0» фаза не изменяется.

u(t)=cos2πƒt при 0<t<t    

u(t)=-cos2πƒt при t <t<4t

u(t)=cos2πƒt при 4t<t<7t

 Строю графики временных диаграмм сигналом bикм(t) и соответствующего модулированного сигнала u(t) (с учетом заданного вида модуляции).

 

Записываю аналитическое выражение и построю график автокорреляционной функции Rикм(τ) для последовательных кодовых символов bикм(t), поступающих на вход модулятора. Вычисление и построение провожу применительно к одиночному символу длительностью Т, что соответствует минимально возможному интервалу автокорреляции и максимальной ширине энергетического спектра.

Общая формула для корреляционной функции:

Для получения аналитического выражения корреляционной функции первичного (модулирующего) сигнала используем прием графического вывода формулы КФ случайного синхронного двоичного (телеграфного) сигнала (см. рисунок слева). Из рисунка следует, что B(τ)=E2·(τu-|τ|) при временном сдвиге  |τ|<τu. Следовательно, после нормирования корреляционной функции B(τ) относительно максимума E2 получим искомые выражение и график:

                

                                                                                                          

 

Записываю аналитическое выражение и строю график СПМ (спектральной плотности мощности, энергетического спектра) Gикм(f) этого сигнала.

 

Значение ωk, при кратности которым имеют место нулевые значения Gикм(ω):

 

   

,           где k=±1;±2…±n            

 

     Произвожу вычисления СПМ (спектральной плотности мощности, энергетического спектра) Gикм(f) этого сигнала.

ω

Gикм(ω)[Вт/Гц]

f= ω/2π

0

1,11·10-6

0

0,225·106

1,1110-6

0,036·106

0,45·106

1,076∙10-6

0,072·106

0,9·106

0

0,143·106

1,35·106

0,973∙10-6

0,215·106

1,8·106

0

0,286·106

2,25·106

0,454∙10-6

0,359·106

2,7·106

0

0,43·106

Записываю аналитическое выражение и строю график энергетического спектра модулированного сигнала Gu(f)  для единичного импульса.

  

Вычисляю полосу частот (ширину энергетического спектра) модулированного сигнала

6. КАНАЛ СВЯЗИ

Записываю аналитическое выражение, связывающее сигналы z(t) и u(t) с учетом аддитивного шума и коэффициента Knk

 

Нахожу мощность шума на выходе канала Pш в полосе частот модулированного сигнала Fu.

                                                                                                                                                                                                              

Нахожу мощность Ps модулированного сигнала s(t)=Knku(t) на входе демодулятора.

                      

ОШИБКА. Не учтен

коэффициент передачи канала 0,7

Определяю отношение сигнала к шуму на выходе канала Ps / Pш в децибелах.

Ps / Pш= 1,04

Определяю энергию элементарного символа принятого полезного сигнала длительностью Т

 

Рассчитываю значение параметра h2 – отношение энергии сигнала к СПМ шума на входе демодулятора.

!   

Определяю пропускную способность канала С.

С=ΔFu·log2(1+Pс/Pш)=286·103·log2(1+1,04)=286·103·1,43=408,98 кбит/с

Рассчитываю эффективность использования пропускной способности канала Кс, определяемую как отношение производительности источника сообщений Н(В) к пропускной способности непрерывного канала  С.

                                        Кс=Н(В)/С=90·103/408,98·103=0,22

7. ДЕМОДУЛЯТОР

Структурная схема оптимального демодулятора для заданного вида модуляции и способа приема. Способ сравнения фаз (некогерентный прием).

Полосовой фильтр отсекает помехи вне полосы сигнала. Элемент памяти задерживает сигнал на один единичный интервал. ФД - сравнивает сигнал с предыдущим - задержанным. Если фазы совпадают, то принята "1", если нет то "0".

Рассчитываю среднюю вероятность ошибочного приема двоичного символа рош 

                                  

8. ДЕКОДЕР

Оцениваю обнаруживающую способность q0 заданного кода (n, n-1) c одной проверкой на четность.

dmin=2;    q0=dmin-1=1

Рассчитываю вероятность необнаруженной ошибки рно.

Код с одним битом проверки на четность обнаруживает одиночные ошибки. В соответствии с формулой (7.3) курса лекций и с учетом всего 8 символов в комбинации, вероятность того, что ошибок в кодовой комбинации будет больше, чем в одном символе

,     где  p=pош ОФМ,                   

 

Из этих слагаемых выбираю только те, которые соответствует четному числу ошибок, т.к. остальные обнаруживаются. Это и будет искомая вероятность не обнаруживаемой ошибки:

Очевидно, что р(i=4) ≈ 0, р(i=6 ) ≈ 0,  тогда    рно ≈ р24=0,001621+2,498*10-7=0,001621516     

9. ФИЛЬТР НИЖНИХ ЧАСТОТ

Определяю значение Fср ФНЧ, при котором обеспечивается теоретически точное восстановление непрерывного сообщения.

Непрерывный сигнал может быть восстановлен по своим отсчетам с помощью идеального ФНЧ, частота среза которого Fср определяется выбранным интервалом дискретизации Δt в соответствии с теоремой Котельникова.

Амплитудно-частотная характеристика ФНЧ

                                                                      

                 1 – идеальный фильтр

                                                                                           2 – реальный фильтр

Нахожу импульсную характеристику g(t) ФНЧ и строю график.

Импульсная реакция фильтра связана преобразованием Фурье с комплексным коэффициентом передачи:          

K() примем равным 1 при -2πFср<ω<2πFср  и  K()=0 вне этого интервала.

На оси времени введем также параметр τ – время задержки максимума импульсной характеристики относительно начала импульсного воздействия на ФНЧ. Это время зависит от крутизны фазочастотной характеристики, которая на практике тем выше, чем ближе реальный фильтр к идеальному, иначе говоря, чем выше порядок фильтра. Тогда:

Для упрощения расчетов и построений произведем нормирование импульсной характеристики относительно частоты среза фильтра Fср = 9000 Гц:


 

А также другие работы, которые могут Вас заинтересовать

36899. Ознакомление с работой на учебной микро-ЭВМ 171.73 KB
  Задание 1 Краткое назначение блоков структурной схемы микроЭВМ БП – блок микропроцессора и схем обрамления обеспечивающих его работу формирующий МД МА и сигналы управления микроЭВМ. БУ – блок управления режимами работы МП. БИСМ – блок индикации состояния магистралей. БУКП – блок управления картой памяти.
36900. Изучение принципа работы ОЗУ 356.65 KB
  Изучение принципа работы ОЗУ Цель работы: исследование принципа работы ОЗУ и мультиплексного способа организации общей шины. Задание 1 УГО ОЗУ в соответствии с рисунком 1 А0А3 – адресные входы; CS – выбор микросхемы; W R – запись считывание; DIO1DIO8 – совмещенные информационные вводывыводы Рисунок 1 Задание 2 Провести очистку ячеек памяти ОЗУ по адресам 0 1 2 3 4 D E F Задание 3 Записать 10 8 по адресам 6 11 считать записанную информацию Задание 4 Составить алгоритм работы ОЗУ Алгоритм работы ОЗУ в соответствии с рисунком 2...
36901. КОНТРОЛЬ РАЗМЕРОВ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ 353 KB
  Цель работы приобрести первичные практические навыки в выполнении измерений с помощью различных универсальных измерительных средств приобрести навыки в оценке годности детали по линейным размерам I. С помощью выбранных универсальных измерительных средств определить действительные размеры проверяемой детали результаты занести в столбцы 712 таблицы 1 и дать заключение о ее годности. Варианты заданий Номер Контролируемые параметры детали образцов А1 А2 А3 А4 А5 А6 А7 1 130 4011 30 50 185H9 32h12 34h8 2 130 395h9 30 50 185D10...
36902. Изучение среды и простейших элементов 405.5 KB
  Домашнее задание выполняется по различным вариантам. В данном варианте меняется только цвет фона всей формы и цвет фона окна Text3. Варианты индивидуальных заданий. Разработать Windowsприложение вычисления значения функции у средствами Visul Bsic Вариант №1 у = b^2 c^2 –t^2 Вариант №2 y = bc^3 – c t^2 Вариант №3 y = b^3 c t^2 Вариант №4 y = c3 t c^2 Вариант №5 y = c^2 b t^2 Вариант №6 y = tk^5 c b^3 Вариант №7 y = c^3 t^2 b^5 Вариант №8 y = c^2 t b^2 Вариант №9 y = c^3 t b^2...
36903. Разработка приложений с разветвляющимися алгоритмами 359 KB
  Lbel1 Cption При х = Lbel2 Cption Функция вычисляется по формуле: Lbel3 Cption Получен результат Y = Lbel4 Cption Lbel5 Cption Лабораторная работа 2.Вариант 37 Text1 Text Text2...
36904. Изучение основных явлений поляризации света 483 KB
  Изучение основных явлений поляризации света. Цель работы: Получение и исследование поляризованного света и исследование свойств обыкновенных и необыкновенных лучей полученных с помощью двояко преломляющего кристалла. Принципиальная схема установки или её главных узлов: 1 упражнение: 2 упражнение: ИС – источник света; ИС – источник света; П – поляроид 1поляризатор; Д...
36905. Изучение физических явлений, лежащих в основе работы полупроводникового фотоэлемента с запирающим слоем, определение зависимости фототока от освещенности, снятие ширины запрещенной зоны полупроводника 713 KB
  Цель работы: Изучение физических явлений лежащих в основе работы полупроводникового фотоэлемента с запирающим слоем определение зависимости фототока от освещенности снятие ширины запрещенной зоны полупроводника. На рисунке выше Ес – энергия дна свободной зоны Ев – энергия потолка валентной зоны; Fм Fп – уровни Ферми металла и полупроводника Ам Ап – работы выхода электрона из металла и полупроводника. Если уровень Ферми изолированного металла Fм лежит выше уровня Ферми полупроводника Fп – т. Ам Ап то в первый момент их...
36906. Измерение холловской разности потенциалов в полулроводниковой пластине и определение концентрации, подвижности и знака носителей заряда, участвующих в токе 294.5 KB
  Эффект Холла в полупроводниках. Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Эффект Холла заключается в возникновении поперечной разности потенциалов при пропускании тока через металлическую или полупроводниковую пластинку помещенную в магнитное поле направленное под некоторым углом к направлению тока. Классическая...
36907. Подтверждение боровской теории строения водородоподобных атомов 255.5 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: В основе теории Бора лежат следующие постулаты: Первый постулат Бора постулат стационарных состояний: существуют некоторые стационарные состояния атома находясь в которых он не излучает энергии. Второй постулат Бора правило квантования орбит утверждает что в стационарном состоянии атома электрон двигаясь по круговой орбите должен иметь квантованные значения момента импульса удовлетворяющие условию где п = 1; 2;...