4893

Применение логических инструкций

Доклад

Информатика, кибернетика и программирование

Применение логических инструкций Логические команды служат для сброса или установки отдельных бит в байте или слове. Они включают булевы операторы НЕ, И, ИЛИ, исключающее ИЛИ и операцию тестирования, которая устанавливает флаги, но не изменяет значе...

Русский

2012-11-28

43 KB

2 чел.

Применение логических инструкций

Логические команды служат для сброса или установки отдельных бит в байте или слове. Они включают булевы операторы НЕ, И, ИЛИ, исключающее ИЛИ и операцию тестирования, которая устанавливает флаги, но не изменяет значения своих операндов.

Логические инструкции

not dst

Инструкция not инвертирует все биты байта или слова.

and dst, src

Инструкция and выполняет операции логическое И двух операндов (байтов или слов) и возвращает результат в операнд-приемник. Бит результата устанавливается в 1, если установлены в 1 оба соответствующих ему бита операндов, и устанавливаются в 0 противном случае.

or dst, src

Инструкция or выполняет операции логическое ИЛИ двух операторов (байтов или слов) и помещает результат на место операнда-приемника. Бит результата устанавливается в 1, если равен 1 хотя бы один из двух соответствующих ему битов операндов и устанавливается в 0 в противном случае.

xor dst, src

Инструкция xor выполняет операцию логическое исключающее ИЛИ двух операндов и помещает результат на место операнда-приемника. Бит результата устанавливается в 1, если соответствующие ему биты операндов имеют противоположные значения, и устанавливается в 0 в противном случае.

test dst, src 

Инструкция test выполняет логическое И двух операндов (байтов или слов), модифицирует флаги, но результат не возвращает, т.е. операнды не изменяются.

В таблице 4.1. приведены значения регистра флагов, устанавливаемые логическими командами.

Таблица 4.1

Логические инструкции

Мнемокод

Флаги

Действие

Код

Операнды

O

S

Z

A

P

C

and

dst, src

0

x

x

u

x

0

логическое И

or

dst, src

0

x

x

u

x

0

логическое ИЛИ

xor

dst, src

0

x

x

u

x

0

логическое исключающее ИЛИ

not

Dst

-

-

-

-

-

-

логическое НЕТ

test

dst, src

0

x

x

u

x

0

логическое И без изменения dst

Примечание:  

-

флажок не модифицируется;

х

Устанавливается или сбрасывается в соответствии с результатом;

u

не определен;

0

Сбрасывается в 0.

  1.  Примеры использования логических команд

Установить 3 и 0 биты в регистре аl, остальные биты не изменять.

or al, 00001001b

Сбросить 4 и 6 битвы в регистре al, остальные биты не изменять.

and al, 10101111b

Инвертировать 2 и 4 биты в регистре al, остальные биты не изменять.

xor al, 00010100b

Перейти на метку LAB, если установлен 4 бит регистра al, в противном случае продолжить выполнение программы.

test al, 00010000b

jnz LAB

продолжаем

. . .

LAB:

Посчитать число единиц в регистре al, рассматривая байт, как набор бит.

mov cx, b   ; число сдвигов

xor bl, bl   ; обнуление BL

LL:  shl al, 1   ; сдвиг влево на один разряд

jnc NO    ; переход, если нет переноса

inc bl    ; иначе увеличить BL

NO:  loop LL   ; возврат, если cx 0


 

А также другие работы, которые могут Вас заинтересовать

84258. Способы питания микроорганизмов 33.22 KB
  Пищей обычно называют вещества которые попав в живой организм служат либо источником энергии необходимой для процессов жизнедеятельности либо материалом для построения составных частей клетки. Голофитный способ живые существа используют питательные вещества всасывая их в виде относительно небольших молекул из водного раствора. Чтобы проникнуть в клетку питательные вещества должны находиться в растворенном состоянии и иметь соответствующий размер молекул. Однако это не означает что микроорганизмы не используют высокомолекулярные...
84259. Химический состав микробной клетки 33.69 KB
  Связанная вода входит в состав коллоидов клетки и с трудом высвобождается из них. С потерей связанной воды нарушаются клеточные структуры и наступает гибель клетки. При удалении свободной воды гибели клетки не происходит.
84260. Механизмы поступления питательных веществ в клетку 32.25 KB
  ЦПМ регулирует не только поступление веществ в клетку но и выход из нее воды разнообразных продуктов обмена и ионов что обеспечивает нормальную жизнедеятельность клетки. Существует несколько механизмов транспорта питательных веществ в клетку: простая диффузия облегченная диффузия и активный транспорт. Транспорт веществ через цитоплазматическую мембрану схематично изображен на рис.
84261. Пищевые потребности и типы питания микроорганизмов 42 KB
  В зависимости от источника углерода микроорганизмы делятся на: автотрофы сами себя питающие которые используют углерод из неорганических соединений углекислого газа и карбонатов; гетеротрофы питаются за счет других используют углерод из органических соединений. В зависимости от источника энергии различают: фототрофы микроорганизмы которые в качестве источника энергии используют энергию солнечного света; хемотрофы энергетическим материалом для этих микроорганизмов являются разнообразные органические и неорганические вещества....
84262. Понятие о конструктивном и энергетическом обмене 38.76 KB
  Из веществ среды перенесенных в клетку собираются строительные блоки из которых формируются биополимеры клетки и синтезируются белки жиры углеводы нуклеиновые кислоты и другие клеточные компоненты. Обмен веществ можно рассматривать как сумму двух явлений: катаболизма энергетического обмена представляющего собой ферментативное расщепление крупных органических молекул с выделением свободной энергии которая запасается в виде макроэргических связей в молекулах АТФ; анаболизма конструктивного обмена представляющего собой синтез...
84263. Энергетический метаболизм, его сущность. Макроэргические соединения. Типы фосфорилирования 35.11 KB
  Энергия образуемая при энергетическом обмене трансформируется в энергию макроэргических связей молекул АТФ. Процесс образования АТФ называется фосфорилированием. Механизм образования АТФ у разных групп микроорганизмов неодинаков. Фотофосфорилирование образование АТФ при поглощении квантов света молекулами хлорофилла.
84264. Энергетический метаболизм хемоорганогетеротрофов, использующих процессы брожения 35.13 KB
  Образование молекул АТФ при брожении происходит путем субстратного фосфорилирования. Основными стадиями гликолиза являются присоединение фосфатных групп от молекулы АТФ и превращение во фруктозо16дифосфат. При этом образуется свободная энергия достаточная для образования 4 молекул АТФ.
84265. Энергетический метаболизм хемоорганогетеротрофов, использующих процесс дыхания 33.75 KB
  При этом на каждые 2 атома водорода поступающих в дыхательную цепь синтезируются 3 молекулы АТФ. Таким образом суммарный энергетический эффект процесса окисления одной молекулы глюкозы теоретически составляет 38 молекулы АТФ причем 2 молекулы АТФ образуются в результате субстратного фосфорилирования а 36 АТФ при окислительном фосфорилировании.